Search results for "020210 optoelectronics & photonics"

showing 10 items of 268 documents

Label-free wavelength and phase detection based SMS fiber immunosensors optimized with cladding etching

2018

The performance of E-SMS (Etched Singlemode-Multimode-Singlemode) optical fiber structures as immunosensors has been assessed by the implementation of antibody/antigen immunoassays. Through this procedure it has been proven that E-SMS structures are effective and suitable optical platforms for label-free biosensing. Using the phase shift and tracking the wavelength response it was found that the fabricated E-SMS devices exhibited limits of detection (LOD) down up to concentrations of 0.2mg/L of antigens in solution. This was achieved by coating the E-SMS with an antibody-based biolayer (goat IgG) that is able to determine the presence of anti-goat IgG antigen. Both a wavelength detection an…

Engineeringoptical fiber23010202 engineering and technologyFiber-optic biosensorsbiosensorlabel-free020210 optoelectronics & photonics0202 electrical engineering electronic engineering information engineeringMaterials Chemistry220905Electrical and Electronic EngineeringInstrumentationEtched-SMSIgG/Anti-IgG bindingLabel freebusiness.industryMetals and AlloysCondensed Matter PhysicsCladding (fiber optics)Surfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsLabel-free immunosensorsBio-layerChristian ministrybusinessTelecommunications
researchProduct

Compact 20-pass thin-disk amplifier insensitive to thermal lensing

2019

We present a multi-pass amplifier which passively compensates for distortions of the spherical phase front occurring in the active medium. The design is based on the Fourier transform propagation which makes the output beam parameters insensitive to variation of thermal lens effects in the active medium. The realized system allows for 20 reflections on the active medium and delivers a small signal gain of 30 with M$^2$ = 1.16. Its novel geometry combining Fourier transform propagations with 4f-imaging stages as well as a compact array of adjustable mirrors allows for a layout with a footprint of 400 mm x 1000 mm.

FOS: Physical sciences02 engineering and technology7. Clean energy01 natural scienceslaw.invention010309 opticsFootprint (electronics)symbols.namesake020210 optoelectronics & photonicsOpticslaw0103 physical sciencesThermal0202 electrical engineering electronic engineering information engineeringThin-disk lasers; Multi-pass amplifier; Optical Fourier transform; High power; Relay imaging; Thermal lens; Mirror arrayPhysicsbusiness.industryAmplifierLens (optics)Fourier transformThin disksymbolsThermal lensingbusinessBeam (structure)Optics (physics.optics)Physics - Optics
researchProduct

Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre

2019

International audience; We report on numerical calculations of the spontaneous emission rate of a Rydberg-excited sodium atom in the vicinity of an optical nanobre. In particular, we study how this rate varies with the distance of the atom to the bre, the bre's radius, the symmetry s or p of the Rydberg state as well as its principal quantum number. We nd that a fraction of the spontaneously emitted light can be captured and guided along the bre. This suggests that such a setup could be used for networking atomic ensembles, manipulated in a collective way due to the Rydberg blockade phenomenon.

FOS: Physical sciences02 engineering and technologyoptical nanofibres01 natural sciencessymbols.namesake020210 optoelectronics & photonics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesAtomPrincipal quantum number0202 electrical engineering electronic engineering information engineeringSpontaneous emissionPhysics::Atomic Physics010306 general physicsPhysicsQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Spontaneous emission ratesRadiusCondensed Matter Physicsspontaneous emission ratesAtomic and Molecular Physics and OpticsSymmetry (physics)Optical nanobresRydberg atomRydberg formulasymbols[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsRydberg stateQuantum Physics (quant-ph)Rydberg atoms
researchProduct

The temporal analogue of diffractive couplers

2020

International audience; Based on the space-time duality of light, we numerically demonstrate that temporal dispersion grating couplers can generate from a single pulse an array of replicas of equal amplitude. The phase-only profile of the temporal grating is optimized by a genetic algorithm that takes into account the optoelectronic bandwidth limitations of the setup.

FOS: Physical sciencesDuality (optimization)Physics::Optics02 engineering and technologyGrating01 natural sciences010309 optics020210 optoelectronics & photonicsOptics0103 physical sciencesDispersion (optics)Genetic algorithm0202 electrical engineering electronic engineering information engineeringUltrafast processingPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryBandwidth (signal processing)Single pulseGeneral MedicineQC350-467Optics. LightAmplitudePhase modulationSpace-time analogybusinessOptics (physics.optics)Physics - Optics
researchProduct

Nonlinear Characterisation of an AsSe Chalcogenide Holey Fiber

2009

oral session TuA " Highly Nonlinear Fibers " [TuA1]; International audience; We report the nonlinear characterization of a chalcogenide holey fiber, based on the AsSe glass composition. A nonlinear coefficient as high as 15 000 W-1 km-1 has been measured.

FabricationKerr effectOptical fiberMaterials science[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicChalcogenideChalcogenide glass02 engineering and technology01 natural scienceslaw.invention010309 opticschemistry.chemical_compound020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringbusiness.industryNonlinear opticsNonlinear systemchemistry[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessRefractive index
researchProduct

Polarization Modulation Instability in Dispersion-Engineered Photonic Crystal Fibers

2021

Generation of widely spaced polarization modulation instability (PMI) sidebands in a wide collection of photonic crystal fibers (PCF), including liquid-filled PCFs, is reported. The contribution of chromatic dispersion and birefringence to the net linear phase mismatch of PMI is investigated in all-normal dispersion PCFs and in PCFs with one (or two) zero dispersion wavelengths. Large frequency shift sidebands are demonstrated experimentally. Suitable fabrication parameters for air-filled and liquid-filled PCFs are proposed as guidelines for the development of dual-wavelength light sources based on PMI.

FabricationMaterials scienceGeneral Chemical EngineeringANDi fiberPhysics::Optics02 engineering and technology01 natural sciencesInstability010309 opticsInorganic Chemistry020210 optoelectronics & photonics0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringlcsh:QD901-999General Materials ScienceMaterialsLinear phaseBirefringencebusiness.industryliquid-filled PCFPolarization modulationÒpticaCondensed Matter PhysicsWavelengthpolarization modulation instabilityOptoelectronicsCristallslcsh:Crystallographybusinessphotonic crystal fiberPhotonic-crystal fiberCrystals
researchProduct

High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber Optic Couplers

2017

In this paper, a simple and compact fiber-optic sensor based on an overcoupled tapered fiber coupler is studied. The coupler is fabricated to be operated well beyond the initial coupling cycles, where the rapid exchange of energy between outputs ports enable the fabrication of a highly sensitive device. The suitability and sensitivity of the proposed scheme is demonstrated by measuring refractive index (RI) variations of sugar concentrations in water. The device presents a linear response in terms of power transmission or wavelength shift versus RI changes. The best achieved sensitivity is 0.442 units of normalized transmission per unit of sugar concentration, with a noise detection limit o…

FabricationMaterials scienceOptical fiberOptical fiber couplers02 engineering and technologylaw.invention020210 optoelectronics & photonicsOpticslaw0202 electrical engineering electronic engineering information engineeringFiberSensitivity (control systems)Electrical and Electronic EngineeringInstrumentationCouplersCouplingbusiness.industryOptical fiber sensorsUNESCO::FÍSICA::Óptica ::Fibras ópticasTransmission (telecommunications):FÍSICA::Óptica ::Fibras ópticas [UNESCO]CouplingsbusinessRefractive indexEnergy (signal processing)
researchProduct

Bringing Plasmonics Into CMOS Photonic Foundries: Aluminum Plasmonics on Si$_{3}$N$_{4}$ for Biosensing Applications

2019

We present a technology platform supported by a new process design kit (PDK) that integrates two types of aluminum plasmonic waveguides with Si $_{3}$ N $_{4}$ photonics towards CMOS-compatible plasmo-photonic integrated circuits for sensing applications. More specifically, we demonstrate the fabrication of aluminum slot waveguide via e-beam lithography (EBL) on top of the Si $_{3}$ N $_{4}$ waveguide and an optimized fabrication process of aluminum plasmonic stripe waveguides within a CMOS foundry using EBL. Experimental measurements revealed a propagation length of 6.2 μm for the plasmonic slot waveguide in water at 1550 nm, reporting the first ever experimental demonstration of a plasmon…

FabricationMaterials sciencebusiness.industry02 engineering and technologyWaveguide (optics)Atomic and Molecular Physics and OpticsSlot-waveguide020210 optoelectronics & photonicsCMOS0202 electrical engineering electronic engineering information engineeringOptoelectronicsPhotonicsbusinessLithographyPlasmonElectron-beam lithographyJournal of Lightwave Technology
researchProduct

Fiber-based device for the detection of low-intensity fluctuations of ultrashort pulses

2012

International audience; We describe a fiber-based device that can significantly enhance the low intensity fluctuations of an ultrashort pulse train to detect them more easily than with usual direct detection systems. Taking advantage of the Raman intrapulse effect that progressively shifts the central frequency of a femtosecond pulse propagating in an anomalous dispersion fiber, a subsequent spectral filtering can efficiently increase the level of fluctuations by more than one order of magnitude. We show that attention has to be paid to maintain the shape of the statistical distribution unaffected by the nonlinear process.

Femtosecond pulse shapingMaterials science02 engineering and technologySpectrum Analysis Raman01 natural sciences010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticsMultiphoton intrapulse interference phase scan0103 physical sciences0202 electrical engineering electronic engineering information engineeringFiberElectrical and Electronic EngineeringSelf-phase modulationEngineering (miscellaneous)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryOptical DevicesEquipment DesignAtomic and Molecular Physics and OpticssymbolsbusinessUltrashort pulseBandwidth-limited pulseRaman scatteringPhotonic-crystal fiber
researchProduct

Experimental generation of parabolic pulses via Raman amplification in optical fiber

2003

Parabolic pulse generation via Raman amplification is experimentally demonstrated in 5.3 km of non-zero dispersion shifted fiber presenting normal group velocity dispersion at the injected signal pulse wavelength of 1550 nm. The fiber is pumped by a commercially-available continuous wave source at 1455 nm, and the intensity and chirp of the amplifier output are characterized using frequency-resolved optical gating. For 2.4 pJ input pulses of 10 ps duration, the output pulse characteristics are studied as a function of amplifier gain over the range 11-24 dB, allowing the evolution of the input pulse to a parabolic pulse to be clearly seen for amplifier gains exceeding 15 dB. Numerical compre…

Femtosecond pulse shapingOptical amplifierRaman amplificationMaterials sciencebusiness.industryPhysics::Optics02 engineering and technology01 natural sciencesAtomic and Molecular Physics and Optics010309 optics020210 optoelectronics & photonicsOpticsZero-dispersion wavelength0103 physical sciences0202 electrical engineering electronic engineering information engineeringChirpDispersion-shifted fiberbusinessUltrashort pulseBandwidth-limited pulseOptics Express
researchProduct