Search results for "020210 optoelectronics & photonics"
showing 10 items of 268 documents
Label-free wavelength and phase detection based SMS fiber immunosensors optimized with cladding etching
2018
The performance of E-SMS (Etched Singlemode-Multimode-Singlemode) optical fiber structures as immunosensors has been assessed by the implementation of antibody/antigen immunoassays. Through this procedure it has been proven that E-SMS structures are effective and suitable optical platforms for label-free biosensing. Using the phase shift and tracking the wavelength response it was found that the fabricated E-SMS devices exhibited limits of detection (LOD) down up to concentrations of 0.2mg/L of antigens in solution. This was achieved by coating the E-SMS with an antibody-based biolayer (goat IgG) that is able to determine the presence of anti-goat IgG antigen. Both a wavelength detection an…
Compact 20-pass thin-disk amplifier insensitive to thermal lensing
2019
We present a multi-pass amplifier which passively compensates for distortions of the spherical phase front occurring in the active medium. The design is based on the Fourier transform propagation which makes the output beam parameters insensitive to variation of thermal lens effects in the active medium. The realized system allows for 20 reflections on the active medium and delivers a small signal gain of 30 with M$^2$ = 1.16. Its novel geometry combining Fourier transform propagations with 4f-imaging stages as well as a compact array of adjustable mirrors allows for a layout with a footprint of 400 mm x 1000 mm.
Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre
2019
International audience; We report on numerical calculations of the spontaneous emission rate of a Rydberg-excited sodium atom in the vicinity of an optical nanobre. In particular, we study how this rate varies with the distance of the atom to the bre, the bre's radius, the symmetry s or p of the Rydberg state as well as its principal quantum number. We nd that a fraction of the spontaneously emitted light can be captured and guided along the bre. This suggests that such a setup could be used for networking atomic ensembles, manipulated in a collective way due to the Rydberg blockade phenomenon.
The temporal analogue of diffractive couplers
2020
International audience; Based on the space-time duality of light, we numerically demonstrate that temporal dispersion grating couplers can generate from a single pulse an array of replicas of equal amplitude. The phase-only profile of the temporal grating is optimized by a genetic algorithm that takes into account the optoelectronic bandwidth limitations of the setup.
Nonlinear Characterisation of an AsSe Chalcogenide Holey Fiber
2009
oral session TuA " Highly Nonlinear Fibers " [TuA1]; International audience; We report the nonlinear characterization of a chalcogenide holey fiber, based on the AsSe glass composition. A nonlinear coefficient as high as 15 000 W-1 km-1 has been measured.
Polarization Modulation Instability in Dispersion-Engineered Photonic Crystal Fibers
2021
Generation of widely spaced polarization modulation instability (PMI) sidebands in a wide collection of photonic crystal fibers (PCF), including liquid-filled PCFs, is reported. The contribution of chromatic dispersion and birefringence to the net linear phase mismatch of PMI is investigated in all-normal dispersion PCFs and in PCFs with one (or two) zero dispersion wavelengths. Large frequency shift sidebands are demonstrated experimentally. Suitable fabrication parameters for air-filled and liquid-filled PCFs are proposed as guidelines for the development of dual-wavelength light sources based on PMI.
High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber Optic Couplers
2017
In this paper, a simple and compact fiber-optic sensor based on an overcoupled tapered fiber coupler is studied. The coupler is fabricated to be operated well beyond the initial coupling cycles, where the rapid exchange of energy between outputs ports enable the fabrication of a highly sensitive device. The suitability and sensitivity of the proposed scheme is demonstrated by measuring refractive index (RI) variations of sugar concentrations in water. The device presents a linear response in terms of power transmission or wavelength shift versus RI changes. The best achieved sensitivity is 0.442 units of normalized transmission per unit of sugar concentration, with a noise detection limit o…
Bringing Plasmonics Into CMOS Photonic Foundries: Aluminum Plasmonics on Si$_{3}$N$_{4}$ for Biosensing Applications
2019
We present a technology platform supported by a new process design kit (PDK) that integrates two types of aluminum plasmonic waveguides with Si $_{3}$ N $_{4}$ photonics towards CMOS-compatible plasmo-photonic integrated circuits for sensing applications. More specifically, we demonstrate the fabrication of aluminum slot waveguide via e-beam lithography (EBL) on top of the Si $_{3}$ N $_{4}$ waveguide and an optimized fabrication process of aluminum plasmonic stripe waveguides within a CMOS foundry using EBL. Experimental measurements revealed a propagation length of 6.2 μm for the plasmonic slot waveguide in water at 1550 nm, reporting the first ever experimental demonstration of a plasmon…
Fiber-based device for the detection of low-intensity fluctuations of ultrashort pulses
2012
International audience; We describe a fiber-based device that can significantly enhance the low intensity fluctuations of an ultrashort pulse train to detect them more easily than with usual direct detection systems. Taking advantage of the Raman intrapulse effect that progressively shifts the central frequency of a femtosecond pulse propagating in an anomalous dispersion fiber, a subsequent spectral filtering can efficiently increase the level of fluctuations by more than one order of magnitude. We show that attention has to be paid to maintain the shape of the statistical distribution unaffected by the nonlinear process.
Experimental generation of parabolic pulses via Raman amplification in optical fiber
2003
Parabolic pulse generation via Raman amplification is experimentally demonstrated in 5.3 km of non-zero dispersion shifted fiber presenting normal group velocity dispersion at the injected signal pulse wavelength of 1550 nm. The fiber is pumped by a commercially-available continuous wave source at 1455 nm, and the intensity and chirp of the amplifier output are characterized using frequency-resolved optical gating. For 2.4 pJ input pulses of 10 ps duration, the output pulse characteristics are studied as a function of amplifier gain over the range 11-24 dB, allowing the evolution of the input pulse to a parabolic pulse to be clearly seen for amplifier gains exceeding 15 dB. Numerical compre…