Search results for "2506"

showing 10 items of 112 documents

Spectral properties and lifetime of green emission in γ-ray irradiated bismuth-doped silica photonic crystal fibers

2018

Abstract We report an experimental investigation focused on the green emission detected in γ-ray irradiated Bismuth-doped photonic crystal fibers. Our photoluminescence spectra, recorded at room temperature, provide evidence for the presence of two emission bands both located at ~ 530 nm (2.34 eV). One emission is detected only in the Bi-doped core while the other, is detected in the cladding. These two emissions feature different excitation spectra and a fast and a slow decay lifetime. The origin of the fast emission decay, about ten nanoseconds, is tentatively attributed to a silica intrinsic defect, whereas the slow component, having lifetime of about 2 μs and featuring anti-stokes emiss…

Materials Chemistry2506 Metals and AlloysOptical fiberOptical fiberMaterials sciencePhotoluminescenceAstrophysics::High Energy Astrophysical PhenomenaRadiation effectPhysics::Opticschemistry.chemical_elementCeramics and CompositeCondensed Matter PhysicAstrophysics::Cosmology and Extragalactic Astrophysics02 engineering and technology01 natural sciencesMolecular physicsSpectral lineBi-doped silicalaw.inventionBismuth010309 opticslaw0103 physical sciencesMaterials ChemistryIrradiationPhotoluminescenceComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy Astrophysics[PHYS.PHYS]Physics [physics]/Physics [physics]Electronic Optical and Magnetic MaterialDoping021001 nanoscience & nanotechnologyCondensed Matter PhysicsCladding (fiber optics)Electronic Optical and Magnetic MaterialschemistryCeramics and Composites0210 nano-technologyPhotonic-crystal fiberJournal of Non-Crystalline Solids
researchProduct

Effect of PCL/PEG-Based Membranes on Actinorhodin Production in Streptomyces coelicolor Cultivations

2015

The actinomycetes, Gram-positive filamentous bacteria, are the most prolific source of natural occurring antibiotics. At an industrial level, antibiotics from actinomycete strains are produced by means of submerged fermentations, where one of the major factors negatively affecting bioproductivity is the pellet-shaped biomass growth. The immobilization of microorganisms on properly chosen supports prevents cell-cell aggregation resulting in improving the biosynthetic capability. Thus, novel porous biopolymer-based devices are developed by combining melt mixing and particulate leaching. In particular, polycaprolactone (PCL), polyethylene glycol (PEG), and sodium chloride (NaCl) with different…

Materials Chemistry2506 Metals and AlloysPCL/PEG membranePolymers and PlasticsPolyestersParticulate leachingS. coelicolor immobilizationAnthraquinonesStreptomyces coelicolorBioengineering02 engineering and technologyPolyethylene glycolengineering.material010402 general chemistry01 natural sciencesActinorhodinPolyethylene GlycolsBiomaterialschemistry.chemical_compoundMelt mixingPEG ratioBotanyMaterials ChemistryCell AggregationPolymers and PlasticbiologyChemistryStreptomyces coelicolorActinorhodin productiontechnology industry and agriculture021001 nanoscience & nanotechnologybiology.organism_classificationBiomaterialCell aggregationAnti-Bacterial Agents0104 chemical sciencesBlue coloredMembraneChemical engineeringFermentationengineeringBiopolymer0210 nano-technologyBiotechnology
researchProduct

The formation of silica high temperature polymorphs from quartz: Influence of grain size and mineralising agents

2015

Abstract The formation of high-temperature silica polymorphs in presence of Na and K has been studied at various temperatures and soaking times, starting from quartzes of different grain size, ex situ as well as in situ. The results show that cristobalite and tridymite formation is strongly influenced by the nature and the amount of mineraliser added. In particular, K seems to discriminate more between the two structures, as it produces the largest observed amount of cristobalite. The disappearance of quartz can be controlled by the proper combination of mineraliser/temperature/time, which in turn control the amount and the type of polymorph formed, together with the amount of amorphous mat…

Materials Chemistry2506 Metals and AlloysPhase transitionMaterials scienceMineraliser; Phase transition; Silica polymorphs; Ceramics and Composites; Materials Chemistry2506 Metals and AlloysCeramics and CompositeCristobaliteGrain sizeAmorphous solidSilica polymorphMineraliser; Phase transition; Silica polymorphsCrystallographyTridymiteChemical engineeringLinear combination of atomic orbitalsvisual_artMineraliserMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCeramicQuartzSilica polymorphsPhase transition
researchProduct

Structural and luminescence properties of amorphous SiO2 nanoparticles

2011

We report an experimental study on the photoluminescence band peaked at 2.7 eV (blue band) induced by thermal treatments in nanometric amorphous SiO 2. In particular the emission dependence on the nanometric particles size as a function of their mean diameter from 7 nm up to 40 nm is investigated. We found that the emission amplitude increases on decreasing the particle diameter, showing a strong correlation between the blue band and the nanometric nature of the particles. By Raman spectroscopy measurements it is evidenced that the SiO2 nanoparticles matrix is significantly affected by the reduction of size. Basing on the shell-like model, these findings are interpreted assuming that the de…

Materials Chemistry2506 Metals and AlloysPhotoluminescenceMaterials scienceShell (structure)Analytical chemistryNanoparticleCeramics and CompositeSilica nanoparticleCondensed Matter PhysicMolecular physicssymbols.namesakeMaterials ChemistryPoint-defectRamannanoparticelle di silice difetti di punto fotoluminescenzaElectronic Optical and Magnetic MaterialSettore FIS/01 - Fisica SperimentaleTime-resolved luminescenceCondensed Matter PhysicsCrystallographic defectElectronic Optical and Magnetic MaterialsAmorphous solidCeramics and CompositessymbolsParticle sizeRaman spectroscopyLuminescence
researchProduct

Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripote…

2016

Electrospun poly-l-lactic acid (PLLA) nanofiber mats carrying surface amine groups, previously introduced by nitrogen atmospheric pressure nonequilibrium plasma, are embedded into aqueous solutions of oligomeric acrylamide-end capped AGMA1, a biocompatible polyamidoamine with arg-gly-asp (RGD)-reminiscent repeating units. The resultant mixture is finally cured giving PLLA-AGMA1 hydrogel composites that absorb large amounts of water and, in the swollen state, are translucent, soft, and pliable, yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant, since the hydrogel portion is covalently grafted onto the …

Materials Chemistry2506 Metals and AlloysPluripotent Stem CellsAgmatinePolymers and PlasticsDouble bondpolyamidoaminesPolyestersCell Culture TechniquesNanofibersBioengineering02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsPolyamidoaminePolyaminesMaterials ChemistryHydrogel compositehuman pluripotent stem cellHumansatmospheric pressure nonequilibrium plasmaInduced pluripotent stem cellatmospheric pressure nonequilibrium plasma; electrospun poly-l-lactic nanofibers; human pluripotent stem cells; poly-l-lactic acid-AGMA1 hydrogel composites; polyamidoamines; biotechnology; bioengineering; biomaterials; polymers and plastics; materials chemistry2506 metals and aloyschemistry.chemical_classificationAddition reactionPolymers and PlasticAqueous solutionTissue ScaffoldsHydrogels021001 nanoscience & nanotechnologyBiomaterial0104 chemical sciencesChemical engineeringchemistryCovalent bondNanofiberelectrospun poly-l-lactic nanofiberpoly-l-lactic acid-AGMA1 hydrogel compositeAmine gas treating0210 nano-technologyBiotechnology
researchProduct

Degradable poly(amidoamine) hydrogels as scaffolds for in vitro culturing of peripheral nervous system cells.

2012

This paper reports on the synthesis and physico-chemical, mechanical, and biological characterization of two sets of poly(amidoamine) (PAA) hydrogels with potential as scaffolds for in vivo peripheral nerve regeneration. They are obtained by polyaddition of piperazine with N,N′-methylenebis(acrylamide) or 1,4-bis(acryloyl)piperazine with 1,2-diaminoethane as cross-linking agent and exhibit a combination of relevant properties, such as mechanical strength, biocompatibility, biodegradability, ability to induce adhesion and proliferation of Schwann cells (SCs) preserving their viability. Moreover, the most promising hydrogels, that is those deriving from 1,4-bis(acryloyl)piperazine, allow the …

Materials Chemistry2506 Metals and AlloysPoly(amidoamine)Cell SurvivalBioengineeringBiocompatible MaterialsNeural cell culturingPiperazinesRats Sprague-DawleyGanglia SpinalCell AdhesionPolyaminesAnimalsCell ProliferationNeuronsAcrylamidesPolymers and PlasticTissue EngineeringTissue ScaffoldsHydrogelsPolymer applicationEthylenediaminesBiomaterialNerve RegenerationRatsHydrogelBiodegradableSchwann CellsBiotechnologyMacromolecular bioscience
researchProduct

Reactive blending of functionalized acrylic rubbers and epoxy resins

2001

A high molecular weight acrylonitrile/butadiene/methacrylic acid (Nipol 1472) rubber is chosen to control processability and mechanical properties of a TGDDM (tetra glycidyl diphenyl methane) based epoxy resin formulation for aerospace composite applications. The physical blend of rubber and epoxy resin, achieved by dissolution of all the components in a common solvent, forms a heterogeneous system after solvent removal and presents coarse phase separation during cure that impairs any practical relevance of this material. A marked improvement of rubber-epoxy miscibility is achieved by reactive blending ('pre-reaction') the epoxy oligomer with the functional groups present in the rubber. The…

Materials Chemistry2506 Metals and AlloysPolymers and PlasticMaterials sciencePolymers and PlasticsComposite numbertechnology industry and agricultureGeneral ChemistryEpoxyMiscibilitychemistry.chemical_compoundMethacrylic acidchemistryNatural rubberCompoundingvisual_artMaterials Chemistryvisual_art.visual_art_mediumChemical Engineering (all)Composite materialAcrylonitrileCuring (chemistry)Polymer Engineering & Science
researchProduct

Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives.

2018

Abstract This paper reports the synthesis and the physicochemical characterization of two series of gellan gum (GG) derivatives functionalized with alkyl chains with different number of carbon, from 8 to 18. In particular, low molecular weight gellan gum samples with 52.6 or 96.7 kDa, respectively, were functionalized with octylamine (C8), dodecylamine (C12) and octadecylamine (C18) by using bis(4-nitrophenyl) carbonate (4-NPBC) as a coupling agent. Thermo-rheological and ionotropic crosslinking properties of these gellan gum-alkyl derivatives were evaluated and related to the degree of derivatization in alkyl chains. Results suggested as length and degree of derivatization differently infl…

Materials Chemistry2506 Metals and AlloysPolymers and Plastics02 engineering and technologymacromolecular substances010402 general chemistry01 natural sciencesAlkylaminesGellan gumAlkylaminechemistry.chemical_compoundRheologyPolymer chemistryMaterials ChemistryDerivatizationAlkylchemistry.chemical_classificationPolymers and PlasticOrganic ChemistryHydrogels021001 nanoscience & nanotechnologyGellan gum0104 chemical sciencesHydrogelchemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSelf-healing hydrogels0210 nano-technologyRheologyIonotropic effectCarbohydrate polymers
researchProduct

Organic-inorganic nanocomposites prepared by reactive suspension method: investigation on filler/matrix interactions and their effect on the nanopart…

2017

Epoxy resin/TiO2 nanocomposites prepared by both reactive suspension method, based on in situ synthesis, and conventional mechanical mixing are analysed by solid-state nuclear magnetic resonance and transmission electron microscopy in order to have a deeper insight into the nature of interactions at the polymer/particle interface and their effect on the nanoparticles dispersion. Specifically, solid-state nuclear magnetic resonance experiments showed that the nanoparticles, synthesized by reactive suspension method, can efficiently link the matrix by hydrogen bonds forming a hybrid organic-inorganic 3D network. Such evidences strongly supports our previously reported theory, in which the nan…

Materials Chemistry2506 Metals and AlloysPolymers and PlasticsReactive suspension methodNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesColloid and Surface ChemistryNanoparticles/polymer interfaceH-bondsMaterials ChemistryComposite materialPhysical and Theoretical ChemistrySuspension (vehicle)chemistry.chemical_classificationNanocompositeDispersion; H-bonds; Hybrid nanocomposite; Nanoparticles/polymer interface; Reactive suspension method; Physical and Theoretical Chemistry; Polymers and Plastics; Colloid and Surface Chemistry; Materials Chemistry2506 Metals and AlloysPolymers and PlasticMetals and AlloysPolymerEpoxyDispersionHybrid nanocomposite021001 nanoscience & nanotechnologyH-bondDispersion; H-bonds; Hybrid nanocomposite; Nanoparticles/polymer interface; Reactive suspension method; Physical and Theoretical Chemistry; Polymers and Plastics; Colloid and Surface Chemistry; Materials Chemistry; 2506; Metals and Alloys0104 chemical scienceschemistryTransmission electron microscopyvisual_artvisual_art.visual_art_mediumParticle25060210 nano-technologyDispersion (chemistry)
researchProduct

Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone

2016

In this work we prepared hydrogels based on hyaluronic acid and β-cyclodextrins to sustain the release of both corneal epithelial cells and dexamethasone. This steroid is administered as eye drops several times per day to reduce the risk of rejection in the post operative period after the cornea transplantation and cell release techniques. Hydrogels were produced by crosslinking an amino derivative of hyaluronic acid, with the divinyl sulfone derivative of β-cyclodextrins, this last employed as a crosslinker and solubilizing agent. Drug release studies revealed that dexamethasone containing samples are able to extend the release of this drug for at least five days. Biological studies, condu…

Materials Chemistry2506 Metals and AlloysPolymers and Plasticsmedicine.medical_treatmentCellBeta-CyclodextrinsCell release systemmacromolecular substances02 engineering and technologyPharmacology010402 general chemistry01 natural sciencesDexamethasoneSteroidCorneachemistry.chemical_compoundCorneaHyaluronic acidMaterials ChemistrymedicineCorneal woundHumansHyaluronic acid hydrogelHyaluronic AcidDexamethasoneCells CulturedDrug CarriersPolymers and Plasticbeta-CyclodextrinsOrganic Chemistrytechnology industry and agricultureEpithelial CellsHydrogelsAnatomy021001 nanoscience & nanotechnologyeye diseases0104 chemical sciencesTransplantationDrug Liberationmedicine.anatomical_structurechemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSelf-healing hydrogelssense organs0210 nano-technologymedicine.drug
researchProduct