Search results for "35B65"
showing 10 items of 20 documents
Local regularity for quasi-linear parabolic equations in non-divergence form
2018
Abstract We consider viscosity solutions to non-homogeneous degenerate and singular parabolic equations of the p -Laplacian type and in non-divergence form. We provide local Holder and Lipschitz estimates for the solutions. In the degenerate case, we prove the Holder regularity of the gradient. Our study is based on a combination of the method of alternatives and the improvement of flatness estimates.
The p-Laplacian with respect to measures
2013
We introduce a definition for the $p$-Laplace operator on positive and finite Borel measures that satisfy an Adams-type embedding condition.
$n$-harmonic coordinates and the regularity of conformal mappings
2014
This article studies the smoothness of conformal mappings between two Riemannian manifolds whose metric tensors have limited regularity. We show that any bi-Lipschitz conformal mapping or $1$-quasiregular mapping between two manifolds with $C^r$ metric tensors ($r > 1$) is a $C^{r+1}$ conformal (local) diffeomorphism. This result was proved in [12, 27, 33], but we give a new proof of this fact. The proof is based on $n$-harmonic coordinates, a generalization of the standard harmonic coordinates that is particularly suited to studying conformal mappings. We establish the existence of a $p$-harmonic coordinate system for $1 < p < \infty$ on any Riemannian manifold.
Improved Hölder regularity for strongly elliptic PDEs
2019
We establish surprising improved Schauder regularity properties for solutions to the Leray-Lions divergence type equation in the plane. The results are achieved by studying the nonlinear Beltrami equation and making use of special new relations between these two equations. In particular, we show that solutions to an autonomous Beltrami equation enjoy a quantitative improved degree of H\"older regularity, higher than what is given by the classical exponent $1/K$.
An overdetermined problem for the anisotropic capacity
2015
We consider an overdetermined problem for the Finsler Laplacian in the exterior of a convex domain in \({\mathbb {R}}^{N}\), establishing a symmetry result for the anisotropic capacitary potential. Our result extends the one of Reichel (Arch Ration Mech Anal 137(4):381–394, 1997), where the usual Newtonian capacity is considered, giving rise to an overdetermined problem for the standard Laplace equation. Here, we replace the usual Euclidean norm of the gradient with an arbitrary norm H. The resulting symmetry of the solution is that of the so-called Wulff shape (a ball in the dual norm \(H_0\)).
Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model
2017
We consider a haptotaxis cancer invasion model that includes two families of cancer cells. Both families, migrate on the extracellular matrix and proliferate. Moreover the model describes an epithelial-to-mesenchymal-like transition between the two families, as well as a degradation and a self-reconstruction process of the extracellular matrix. We prove positivity and conditional global existence and uniqueness of the classical solutions of the problem for large initial data.
Boundary regularity for degenerate and singular parabolic equations
2013
We characterise regular boundary points of the parabolic $p$-Laplacian in terms of a family of barriers, both when $p>2$ and $1<p<2$. Due to the fact that $p\not=2$, it turns out that one can multiply the $p$-Laplace operator by a positive constant, without affecting the regularity of a boundary point. By constructing suitable families of barriers, we give some simple geometric conditions that ensure the regularity of boundary points.
p-harmonic coordinates for H\"older metrics and applications
2015
We show that on any Riemannian manifold with H\"older continuous metric tensor, there exists a $p$-harmonic coordinate system near any point. When $p = n$ this leads to a useful gauge condition for regularity results in conformal geometry. As applications, we show that any conformal mapping between manifolds having $C^\alpha$ metric tensors is $C^{1+\alpha}$ regular, and that a manifold with $W^{1,n} \cap C^\alpha$ metric tensor and with vanishing Weyl tensor is locally conformally flat if $n \geq 4$. The results extend the works [LS14, LS15] from the case of $C^{1+\alpha}$ metrics to the H\"older continuous case. In an appendix, we also develop some regularity results for overdetermined el…
Boundary Regularity for the Porous Medium Equation
2018
We study the boundary regularity of solutions to the porous medium equation $u_t = \Delta u^m$ in the degenerate range $m>1$. In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general -- not necessarily cylindrical -- domains in ${\bf R}^{n+1}$. One of our fundamental tools is a new strict comparison principle between sub- and superpara…
On the interior regularity of weak solutions to the 2-D incompressible Euler equations
2016
We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…