Search results for "35B65"

showing 10 items of 20 documents

Local regularity for quasi-linear parabolic equations in non-divergence form

2018

Abstract We consider viscosity solutions to non-homogeneous degenerate and singular parabolic equations of the p -Laplacian type and in non-divergence form. We provide local Holder and Lipschitz estimates for the solutions. In the degenerate case, we prove the Holder regularity of the gradient. Our study is based on a combination of the method of alternatives and the improvement of flatness estimates.

Applied Mathematics010102 general mathematicsMathematical analysisDegenerate energy levelsMathematics::Analysis of PDEsType (model theory)Lipschitz continuity01 natural sciencesParabolic partial differential equation010101 applied mathematicsViscosityMathematics - Analysis of PDEs35B65 35K65 35D40 35K92 35K6FOS: Mathematics0101 mathematicsDivergence (statistics)Laplace operatorAnalysisAnalysis of PDEs (math.AP)Flatness (mathematics)MathematicsNonlinear Analysis
researchProduct

The p-Laplacian with respect to measures

2013

We introduce a definition for the $p$-Laplace operator on positive and finite Borel measures that satisfy an Adams-type embedding condition.

Discrete mathematicsPure mathematicsApplied Mathematicsta111Mathematics::Algebraic Topology35J92 35P30 35D99 35B65Mathematics - Analysis of PDEsAnalysis on fractalsp-LaplacianFOS: MathematicsEmbeddingLaplace operatorAnalysisMathematicsAnalysis of PDEs (math.AP)Journal of mathematical analysis and applications
researchProduct

$n$-harmonic coordinates and the regularity of conformal mappings

2014

This article studies the smoothness of conformal mappings between two Riemannian manifolds whose metric tensors have limited regularity. We show that any bi-Lipschitz conformal mapping or $1$-quasiregular mapping between two manifolds with $C^r$ metric tensors ($r > 1$) is a $C^{r+1}$ conformal (local) diffeomorphism. This result was proved in [12, 27, 33], but we give a new proof of this fact. The proof is based on $n$-harmonic coordinates, a generalization of the standard harmonic coordinates that is particularly suited to studying conformal mappings. We establish the existence of a $p$-harmonic coordinate system for $1 < p < \infty$ on any Riemannian manifold.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsSmoothness (probability theory)GeneralizationGeneral MathematicsCoordinate systemta111conformal mappingsConformal map53A30 (Primary) 35J60 35B65 (Secondary)Riemannian manifoldMathematics - Analysis of PDEsDifferential Geometry (math.DG)Metric (mathematics)FOS: MathematicsDiffeomorphismMathematics::Differential GeometryMathematicsAnalysis of PDEs (math.AP)
researchProduct

Improved Hölder regularity for strongly elliptic PDEs

2019

We establish surprising improved Schauder regularity properties for solutions to the Leray-Lions divergence type equation in the plane. The results are achieved by studying the nonlinear Beltrami equation and making use of special new relations between these two equations. In particular, we show that solutions to an autonomous Beltrami equation enjoy a quantitative improved degree of H\"older regularity, higher than what is given by the classical exponent $1/K$.

Hölder regularityGeneral MathematicsMathematics::Analysis of PDEsElliptic pdes01 natural sciencesBeltrami equationMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsComplex Variables (math.CV)Divergence (statistics)MathematicsDegree (graph theory)Mathematics - Complex VariablesPlane (geometry)Applied Mathematics010102 general mathematicsMathematical analysisQuasiconformal mappingsElliptic equations30C62 (Primary) 35J60 35B65 (Secondary)010101 applied mathematicsNonlinear systemType equationBeltrami equationExponentAnalysis of PDEs (math.AP)
researchProduct

An overdetermined problem for the anisotropic capacity

2015

We consider an overdetermined problem for the Finsler Laplacian in the exterior of a convex domain in \({\mathbb {R}}^{N}\), establishing a symmetry result for the anisotropic capacitary potential. Our result extends the one of Reichel (Arch Ration Mech Anal 137(4):381–394, 1997), where the usual Newtonian capacity is considered, giving rise to an overdetermined problem for the standard Laplace equation. Here, we replace the usual Euclidean norm of the gradient with an arbitrary norm H. The resulting symmetry of the solution is that of the so-called Wulff shape (a ball in the dual norm \(H_0\)).

Laplace's equation35A2335B65Applied Mathematics010102 general mathematicsMathematical analysisAnalysi31B15Minkowski inequality01 natural sciences010101 applied mathematicsOverdetermined systemEuclidean distanceMathematics - Analysis of PDEs35J25Norm (mathematics)FOS: Mathematics0101 mathematicsAnisotropyLaplace operatorAnalysisDual normMathematicsAnalysis of PDEs (math.AP)
researchProduct

Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model

2017

We consider a haptotaxis cancer invasion model that includes two families of cancer cells. Both families, migrate on the extracellular matrix and proliferate. Moreover the model describes an epithelial-to-mesenchymal-like transition between the two families, as well as a degradation and a self-reconstruction process of the extracellular matrix. We prove positivity and conditional global existence and uniqueness of the classical solutions of the problem for large initial data.

Mathematics - Analysis of PDEs35A01 35B65 35Q92 92C17FOS: MathematicsAnalysis of PDEs (math.AP)
researchProduct

Boundary regularity for degenerate and singular parabolic equations

2013

We characterise regular boundary points of the parabolic $p$-Laplacian in terms of a family of barriers, both when $p>2$ and $1<p<2$. Due to the fact that $p\not=2$, it turns out that one can multiply the $p$-Laplace operator by a positive constant, without affecting the regularity of a boundary point. By constructing suitable families of barriers, we give some simple geometric conditions that ensure the regularity of boundary points.

Mathematics - Analysis of PDEsSimple (abstract algebra)Applied MathematicsDegenerate energy levelsMathematical analysis35K20 31B25 35B65 35K65 35K67 35K92FOS: MathematicsBoundary (topology)Mathematics::Spectral TheoryParabolic partial differential equationAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

p-harmonic coordinates for H\"older metrics and applications

2015

We show that on any Riemannian manifold with H\"older continuous metric tensor, there exists a $p$-harmonic coordinate system near any point. When $p = n$ this leads to a useful gauge condition for regularity results in conformal geometry. As applications, we show that any conformal mapping between manifolds having $C^\alpha$ metric tensors is $C^{1+\alpha}$ regular, and that a manifold with $W^{1,n} \cap C^\alpha$ metric tensor and with vanishing Weyl tensor is locally conformally flat if $n \geq 4$. The results extend the works [LS14, LS15] from the case of $C^{1+\alpha}$ metrics to the H\"older continuous case. In an appendix, we also develop some regularity results for overdetermined el…

Mathematics - Differential Geometry53A30 (Primary) 35J60 35B65 (Secondary)
researchProduct

Boundary Regularity for the Porous Medium Equation

2018

We study the boundary regularity of solutions to the porous medium equation $u_t = \Delta u^m$ in the degenerate range $m>1$. In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general -- not necessarily cylindrical -- domains in ${\bf R}^{n+1}$. One of our fundamental tools is a new strict comparison principle between sub- and superpara…

Pure mathematicsComplex systemBoundary (topology)Mathematical AnalysisCharacterization (mathematics)01 natural sciencesMathematics - Analysis of PDEsMathematics (miscellaneous)Matematisk analysporous medium equationFOS: Mathematics0101 mathematicsSpatial domainMathematicsosittaisdifferentiaaliyhtälötDirichlet problemMechanical Engineering010102 general mathematicsDegenerate energy levels35K20 (Primary) 35B51 35B65 35K10 35K55 35K65 (Secondary)010101 applied mathematicsRange (mathematics)boundary regularityPorous mediumAnalysisAnalysis of PDEs (math.AP)Archive for Rational Mechanics and Analysis
researchProduct

On the interior regularity of weak solutions to the 2-D incompressible Euler equations

2016

We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ for weak solutions in the energy space $$L_t^\infty L_x^2$$ , satisfying appropriate vorticity estimates. We also obtain impr…

Pure mathematicsIntegrable systemDimension (graph theory)Mathematics::Analysis of PDEsContext (language use)yhtälötSpace (mathematics)01 natural sciencessymbols.namesakeMathematics - Analysis of PDEs35Q31 (Primary) 76B03 35B65 35Q30 (Secondary)weak solutions0103 physical sciencesinterior regularityBoundary value problem0101 mathematicsMathematicsmatematiikkaApplied Mathematics010102 general mathematicsVorticityEuler equationsEuler equationssymbols010307 mathematical physicsAnalysisEnergy (signal processing)Calculus of Variations and Partial Differential Equations
researchProduct