Search results for "35j25"

showing 10 items of 22 documents

Stress concentration for closely located inclusions in nonlinear perfect conductivity problems

2019

We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1<p \leq N$. We prove optimal $L^\infty$ estimates for the blow-up of the gradient of the solution as the distance between the inclusions tends to zero.

Applied Mathematics010102 general mathematicsMathematical analysisDegenerate energy levelsZero (complex analysis)Perfect conductorAnalysiGradient blow-upType (model theory)Conductivity01 natural sciences010101 applied mathematicsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsFinsler p-Laplacian0101 mathematicsPerfect conductorAnisotropy35J25 35B44 35B50 (Primary) 35J62 78A48 58J60 (Secondary)AnalysisAnalysis of PDEs (math.AP)MathematicsStress concentration
researchProduct

A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary

2016

We study the Dirichlet problem in a domain with a small hole close to the boundary. To do so, for each pair $\boldsymbol\varepsilon = (\varepsilon_1, \varepsilon_2 )$ of positive parameters, we consider a perforated domain $\Omega_{\boldsymbol\varepsilon}$ obtained by making a small hole of size $\varepsilon_1 \varepsilon_2 $ in an open regular subset $\Omega$ of $\mathbb{R}^n$ at distance $\varepsilon_1$ from the boundary $\partial\Omega$. As $\varepsilon_1 \to 0$, the perforation shrinks to a point and, at the same time, approaches the boundary. When $\boldsymbol\varepsilon \to (0,0)$, the size of the hole shrinks at a faster rate than its approach to the boundary. We denote by $u_{\bolds…

Asymptotic analysisGeneral MathematicsBoundary (topology)Asymptotic expansion01 natural sciences35J25; 31B10; 45A05; 35B25; 35C20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (all)Mathematics - Numerical Analysis0101 mathematicsMathematicsDirichlet problemLaplace's equationDirichlet problemAnalytic continuationApplied Mathematics010102 general mathematicsMathematical analysisHigh Energy Physics::PhenomenologyReal analytic continuation in Banach spaceNumerical Analysis (math.NA)Physics::Classical Physics010101 applied mathematicsasymptotic analysisLaplace operatorPhysics::Space PhysicsAsymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain; Mathematics (all); Applied MathematicsAsymptotic expansionLaplace operator[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Singularly perturbed perforated domainAnalytic functionAnalysis of PDEs (math.AP)Asymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain;
researchProduct

Nonlinear diffusion in transparent media: the resolvent equation

2017

Abstract We consider the partial differential equation u - f = div ⁡ ( u m ⁢ ∇ ⁡ u | ∇ ⁡ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.

Dirichlet problemPure mathematicsTotal variation; transparent media; linear growth Lagrangian; comparison principle; Dirichlet problems; Neumann problems35J25 35J60 35B51 35B99Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsBoundary (topology)01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsBounded functionBounded variationFOS: MathematicsNeumann boundary conditionUniquenessNabla symbol0101 mathematicsAnalysisAnalysis of PDEs (math.AP)ResolventMathematics
researchProduct

Gradient estimates for the perfect conductivity problem in anisotropic media

2018

Abstract We study the perfect conductivity problem when two perfectly conducting inclusions are closely located to each other in an anisotropic background medium. We establish optimal upper and lower gradient bounds for the solution in any dimension which characterize the singular behavior of the electric field as the distance between the inclusions goes to zero.

Finsler LaplacianApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisZero (complex analysis)Perfect conductorGradient blow-upConductivity01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsDimension (vector space)Settore MAT/05 - Analisi MatematicaElectric fieldSingular behaviorFOS: MathematicsMathematics (all)Primary: 35J25 35B44 35B50 Secondary: 35J62 78A48 58J600101 mathematicsPerfect conductorAnisotropyAnalysis of PDEs (math.AP)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

An overdetermined problem for the anisotropic capacity

2015

We consider an overdetermined problem for the Finsler Laplacian in the exterior of a convex domain in \({\mathbb {R}}^{N}\), establishing a symmetry result for the anisotropic capacitary potential. Our result extends the one of Reichel (Arch Ration Mech Anal 137(4):381–394, 1997), where the usual Newtonian capacity is considered, giving rise to an overdetermined problem for the standard Laplace equation. Here, we replace the usual Euclidean norm of the gradient with an arbitrary norm H. The resulting symmetry of the solution is that of the so-called Wulff shape (a ball in the dual norm \(H_0\)).

Laplace's equation35A2335B65Applied Mathematics010102 general mathematicsMathematical analysisAnalysi31B15Minkowski inequality01 natural sciences010101 applied mathematicsOverdetermined systemEuclidean distanceMathematics - Analysis of PDEs35J25Norm (mathematics)FOS: Mathematics0101 mathematicsAnisotropyLaplace operatorAnalysisDual normMathematicsAnalysis of PDEs (math.AP)
researchProduct

Anisotropic elliptic equations with gradient-dependent lower order terms and L^1 data

2023

&lt;abstract&gt;&lt;p&gt;We prove the existence of a weak solution for a general class of Dirichlet anisotropic elliptic problems such as $ \mathcal Au+\Phi(x, u, \nabla u) = \mathfrak{B}u+f $ in $ \Omega $, where $ \Omega $ is a bounded open subset of $ \mathbb R^N $ and $ f\in L^1(\Omega) $ is arbitrary. The principal part is a divergence-form nonlinear anisotropic operator $ \mathcal A $, the prototype of which is $ \mathcal A u = -\sum_{j = 1}^N \partial_j(|\partial_j u|^{p_j-2}\partial_j u) $ with $ p_j &amp;gt; 1 $ for all $ 1\leq j\leq N $ and $ \sum_{j = 1}^N (1/p_j) &amp;gt; 1 $. As a novelty in this paper, our lower order terms involve a new class of operators $ \mathfrak B $ such…

Leray--Lions operatorMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaApplied MathematicsFOS: Mathematicssummable datapseudo-monotone operatorlower order term35J25 35B45 35J60Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)nonlinear anisotropic elliptic equation
researchProduct

Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem

2020

Abstract We consider the Laplace equation in a domain of R n , n ≥ 3 , with a small inclusion of size ϵ . On the boundary of the inclusion we define a nonlinear nonautonomous transmission condition. For ϵ small enough one can prove that the problem has solutions. In this paper, we study the local uniqueness of such solutions.

Local uniqueness of the solutionsLaplace's equation020502 materialsApplied MathematicsNonlinear nonautonomous transmission problem010102 general mathematicsMathematical analysisA domainBoundary (topology)02 engineering and technology01 natural sciencesNonlinear systemMathematics - Analysis of PDEs35J25 31B10 35J65 35B25 35A020205 materials engineeringTransmission (telecommunications)Settore MAT/05 - Analisi MatematicaLocal uniqueness of the solutions; Nonlinear nonautonomous transmission problem; Singularly perturbed perforated domainFOS: MathematicsUniqueness0101 mathematicsSingularly perturbed perforated domainAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

Calder\'on's problem for p-Laplace type equations

2016

We investigate a generalization of Calder\'on's problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation with p strictly between one and infinity, which reduces to the standard conductivity equation when p equals two, and to the p-Laplace equation when the conductivity is constant. The thesis consists of results on the direct problem, boundary determination and detecting inclusions. We formulate the equation as a variational problem also when the conductivity may be zero or infinity in large sets. As a boundary determination result we recover the first order derivative of a smooth co…

Mathematics - Analysis of PDEs35R30 (Primary) 35J92 35R05 35D30 35Q60 35Q79 35J20 35J25 35H99 35A15 35A01 35A02 80A23 (Secondary)
researchProduct

Linearized Calder\'on problem and exponentially accurate quasimodes for analytic manifolds

2020

In this article we study the linearized anisotropic Calder\'on problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a complete set. We assume that the manifold is transversally anisotropic and that the transversal manifold is real analytic and satisfies a geometric condition related to the geometry of pairs of intersecting geodesics. In this case, we solve the linearized anisotropic Calder\'on problem. The geometric condition does not involve the injectivity of the geodesic X-ray transform. Crucial ingredients in the proof of our result are the construction of Gaussian beam quasimodes on the…

Mathematics - Analysis of PDEs35R30 35J25 35A18 35A20Mathematics::Differential GeometryMathematical Physics
researchProduct

Determining an unbounded potential for an elliptic equation with a power type nonlinearity

2022

In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential $q$ in $L^{n/2+\varepsilon}$, $\varepsilon>0$, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results from [M. Lassas, T. Liimatainen, Y.-H. Lin, and M. Salo, Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations, Rev. Mat. Iberoam. (2021)] where this is shown for H\"older continuous potentials. Also we show that when the Dirichlet-to-Neumann map is restricted to one point on the boundary, it is possible to determine a potential $q$ in $L^{n+\varepsilon}$. The authors of arXiv:2202.0…

Mathematics - Analysis of PDEsApplied Mathematics35R30 35J25 35J61FOS: Mathematicsinverse problemyhtälötpartial datasemilinear elliptic equationhigher order linearizationinversio-ongelmatAnalysisAnalysis of PDEs (math.AP)
researchProduct