Search results for "ACID"

showing 10 items of 13107 documents

An air-lift biofilm reactor for the production of γ-decalactones by Yarrowia lipolytica

2014

Decalactones are interesting flavouring compounds that can be produced from ricinoleic acid. In this study, the production of lactones in biofilms using Yarrowia lipolytica is investigated. The hydrophobia of cells increased for increased aeration rates resulting in higher adhesion when the reactor wall was hydrophobic (plastic). To increase adhesion, sheets of methyl-polymethacrylate (PMMA) were added in the reactor and the production of lactones increased with the surface of plastic added, reaching 850 mg/L of 3-hydroxy-γ-decalactone for 60 cm2. In an Airlift bioreactor made of PMMA, biofilms were present at the top of the reactor for increased aeration. In the meantime, a metabolic shift…

0106 biological sciencesYarrowia lipolytica[SDV]Life Sciences [q-bio]Ricinoleic acidBioengineeringHydrophobiaβ-Oxidation01 natural sciencesApplied Microbiology and BiotechnologyBiochemistryBiofilm reactor03 medical and health scienceschemistry.chemical_compound010608 biotechnologySurface properties[SDV.IDA]Life Sciences [q-bio]/Food engineeringBioreactorß-Oxidationcvg030304 developmental biology0303 health sciencesScience & TechnologybiologyChemistryLipid biotransformationcvg.computer_videogameAirliftBiofilmYarrowiabiology.organism_classification6. Clean waterYeastChemical engineeringBiochemistryAerationAroma production
researchProduct

Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.

2013

International audience; The nicotianamine synthase (NAS) enzymes catalyze the formation of nicotianamine (NA), a non-proteinogenic amino acid involved in iron homeostasis. We undertook the functional characterization of AtNAS4, the fourth member of the Arabidopsis thaliana NAS gene family. A mutant carrying a T-DNA insertion in AtNAS4 (atnas4), as well as lines overexpressing AtNAS4 both in the atnas4 and the wild-type genetic backgrounds, were used to decipher the role of AtNAS4 in NA synthesis, iron homeostasis and the plant response to iron deficiency or cadmium supply. We showed that AtNAS4 is an important source for NA. Whereas atnas4 had normal growth in iron-sufficient medium, it dis…

0106 biological sciences[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyMESH : Azetidinecarboxylic AcidFMN ReductaseArabidopsis thalianaMutantArabidopsisGene ExpressionPlant Science01 natural sciencesMESH : Cation Transport ProteinsMESH : IronMESH : Arabidopsis ProteinsNicotianamine synthaseMESH : Plants Genetically Modifiedchemistry.chemical_compoundMESH : ArabidopsisGene Expression Regulation PlantGene expressionMESH: Genes PlantArabidopsis thalianaMESH : DNA BacterialHomeostasisMESH: ArabidopsisNicotianamineMESH: Stress PhysiologicalCation Transport ProteinsMESH : Adaptation PhysiologicalMESH : Cadmium2. Zero hungerchemistry.chemical_classification0303 health sciencesCadmiumMESH: IronbiologyGeneral MedicineIron DeficienciesPlants Genetically ModifiedAdaptation PhysiologicalMESH: Azetidinecarboxylic AcidMESH : PhenotypePhenotypeBiochemistryMESH: HomeostasisMESH : HomeostasisMESH : MutationAzetidinecarboxylic AcidCadmiumDNA BacterialMESH: Gene ExpressionMESH: MutationIronMESH: Cadmiumchemistry.chemical_elementMESH: FerritinsMESH: Arabidopsis ProteinsMESH: Alkyl and Aryl TransferasesGenes PlantMESH: PhenotypeNicotianamine synthase03 medical and health sciencesMESH: Cation Transport ProteinsStress PhysiologicalIron homeostasisGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyIron deficiency (plant disorder)MESH: Gene Expression Regulation PlantMESH : Genes PlantMESH : Alkyl and Aryl TransferasesMESH : Stress Physiological030304 developmental biologyMESH : FMN ReductaseAlkyl and Aryl TransferasesArabidopsis ProteinsIron deficiencyNitric oxideNicotianaminebiology.organism_classificationMESH: Adaptation PhysiologicalMESH: DNA BacterialMESH : Gene ExpressionEnzymechemistryMESH: FMN ReductaseMESH: Plants Genetically ModifiedFerritinsMutationbiology.proteinMESH : FerritinsAgronomy and Crop ScienceMESH : Gene Expression Regulation Plant010606 plant biology & botany
researchProduct

A microbiological, physicochemical, and texture study during storage of yoghurt produced under isostatic pressure

2019

Abstract This work aimed to study refrigeration storage (4 °C for 23 days) of yoghurt produced at 43 °C under sub-lethal high pressure, at 10, 20, 30 and 40 MPa, in comparison with the fermentation process at atmospheric pressure (0.1 MPa). Lactic acid bacteria (S. thermophilus and L. bulgaricus, LAB) and quality parameters like pH, titratable acidity, syneresis and colour were evaluated, along with textural analyses to infer how pressure would impact the obtained yoghurt along storage. Higher fermentation pressures resulted in slightly lower LAB loads (a maximum of 1.01 Log (CFU/mL)) and increased the fermentation time (a maximum of 3 h 25 min), syneresis (a maximum of 44%), all for 40 MPa…

0106 biological sciences[SDV.BIO]Life Sciences [q-bio]/BiotechnologyStorageTitratable acid01 natural scienceschemistry.chemical_compound0404 agricultural biotechnology010608 biotechnology[SDV.IDA]Life Sciences [q-bio]/Food engineeringFood scienceTexture (crystalline)[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]ComputingMilieux_MISCELLANEOUSSub-lethal stressSyneresisAtmospheric pressurefood and beveragesRefrigeration[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology04 agricultural and veterinary sciences040401 food science[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]Lactic acidHigh pressurechemistryYoghurtHigh pressureFermentation[SDV.AEN]Life Sciences [q-bio]/Food and NutritionLactic fermentationFood ScienceLWT
researchProduct

Medium-size droplets of methyl ricinoleate are reduced by cell-surface activity in the gamma-decalactone production by Yarrowia lipolytica.

2000

International audience; Size of methyl ricinoleate droplets during biotransformation into gamma-decalactone by Yarrowia lipolytica was measured in both homogenized and non-homogenized media. In non-homogenized but shaken medium, droplets had an average volume surface diameter d32 of 2.5 microm whereas it was 0.7 microm in homogenized and shaken medium. But as soon as yeast cells were inoculated, both diameters became similar at about 0.7 microm and did not vary significantly until the end of the culture. The growth of Y. lipolytica in both media was very similar except for the lag phase which was lowered in homogenized medium conditions.

0106 biological sciences[SDV.BIO]Life Sciences [q-bio]/BiotechnologyTime FactorsCell01 natural sciencesApplied Microbiology and BiotechnologyLactonesBiotransformationMESH : Particle SizeYeastsMESH: Microscopy Confocal[INFO.INFO-BT]Computer Science [cs]/BiotechnologyComputingMilieux_MISCELLANEOUSBiotransformation0303 health sciencesMicroscopyMicroscopy ConfocalbiologyMESH: YeastsMESH : Lactones[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitologymedicine.anatomical_structureBiochemistryConfocalSURFACE ACTIVERicinoleic Acids[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: LactonesMESH : Time Factors03 medical and health sciencesMESH : Biotransformation010608 biotechnologymedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Particle SizeParticle SizeMESH : Microscopy Confocal[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMethyl ricinoleateMESH: BiotransformationMESH : YeastsChromatography030306 microbiologyMESH: Time Factors[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyYarrowiabiology.organism_classificationYeastMESH: Ricinoleic AcidsCulture Media[SDV.BIO] Life Sciences [q-bio]/Biotechnology[INFO.INFO-BT] Computer Science [cs]/BiotechnologyMESH : Ricinoleic AcidsMESH: Culture MediaMESH : Culture Media
researchProduct

Free Radicals Mediate Systemic Acquired Resistance

2014

Summary: Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azel…

0106 biological sciences[SDV]Life Sciences [q-bio]ArabidopsisPseudomonas syringaeReductasemedicine.disease_cause01 natural scienceschemistry.chemical_compoundcuticle formationInducerDicarboxylic Acidsskin and connective tissue diseaseslcsh:QH301-705.5chemistry.chemical_classification0303 health sciencesMutationsalicyclic-acidCell biologydefenseGlutathione ReductaseBiochemistryGlycerophosphates[SDE]Environmental Sciencesplant immunitySystemic acquired resistances-nitrosoglutathioneSecondary infectionnitric-oxidearabidopsis-thalianaBiologyNitric OxideGeneral Biochemistry Genetics and Molecular BiologyNitric oxide03 medical and health sciencesmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyReactive oxygen speciesArabidopsis Proteinsfungicell-deathbody regionschemistrylcsh:Biology (General)azelaic-acidresponsesNitric Oxide SynthaseReactive Oxygen SpeciesFunction (biology)010606 plant biology & botanynitric-oxide;plant immunity;arabidopsis-thaliana;s-nitrosoglutathione;cuticle formation;salicyclic-acid;azelaic-acid;cell-death;responses;defenseCell Reports
researchProduct

Lipid composition of the vacuolar membrane of Acer pseudoplatanus cultured cells

1993

Tonoplast was prepared by osmotic lysis of a pure vacuolar fraction isolated from protoplasts derived from Acer pseudoplatanus cultured cells. After their extraction, neutral and polar lipids were separated by a thin layer chromatography. Phospholipids, glycolipids and neutral lipids represented 44.5%, 39.1% and 16.4% of total lipids, respectively. Sterols (glycosylated plus non-glycosylated forms) constituted 30.8% of total lipids; 75% of sterols were glycosylated. The most prominent lipids were phosphatidylethanolamine (20.8%), phosphatidylcholine (13.5%), ceramide monohexoside (12.8%), steryl glycoside (12.2%) and acylated steryl glycoside (10.9%). Glucose was the only sugar released by …

0106 biological sciences[SDV]Life Sciences [q-bio]BiophysicsPhospholipidBiology01 natural sciencesBiochemistry03 medical and health scienceschemistry.chemical_compoundEndocrinologyGlycolipidPhospholipase A2PhosphatidylcholineComputingMilieux_MISCELLANEOUS030304 developmental biologyOrganelleschemistry.chemical_classificationPhosphatidylethanolamine0303 health sciencesChromatographyFatty AcidsFatty acidGlycosideERABLE FAUX PLATANEPlantsLipidsSterol[SDV] Life Sciences [q-bio]chemistryBiochemistrybiology.proteinlipids (amino acids peptides and proteins)010606 plant biology & botany
researchProduct

Volatile components of ripe fruits of Morinda citrifolia and their effects on Drosophila

1996

Abstract The only larval resource of the specialist species, Drosophila sechellia , is ripe fruits of Morinda citrifolia . The chemical composition of this fruit, which is very toxic to most Drosophila species, was investigated and 51 compounds were abundant enough to be identified by GC-MS. The ripe fruit is characterized by a large amount of carboxylic acids, especially octanoic and hexanoic acids. The biological effects of the ripe fruit and its main acids were investigated with behavioural studies. Octanoic acid is responsible for the general toxicity of the fruit to most Drosophila species; D. sechellia is the only species which is resistant to this acid. Hexanoic acid has a unique eff…

0106 biological sciencesanimal structures[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process EngineeringCarboxylic acidRubiaceaePlant ScienceHorticulture010603 evolutionary biology01 natural sciencesBiochemistryDrosophila sechellia03 medical and health scienceschemistry.chemical_compoundMorinda citrifoliaalkanoic acidsDrosophilidaeBotany[SDV.IDA]Life Sciences [q-bio]/Food engineering[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringFood scienceMolecular BiologyDrosophila030304 developmental biologychemistry.chemical_classificationHexanoic acid0303 health sciencesRubiaceaebiologyfungifood and beveragestoxicityGeneral MedicineDecanoic acid[SDV.IDA] Life Sciences [q-bio]/Food engineeringbiology.organism_classificationDrosophila melanogasterchemistryMorindavolatile components
researchProduct

The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine's Induced Resistance agains…

2018

Grapevine (Vitis vinifera) is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam) and its sulfated derivative (PS3) have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola). However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR)-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this st…

0106 biological sciencesbeta-Glucanslcsh:MedicineCropsCyclopentanes01 natural sciencesBiochemistryFruitsAgricultural ProductionIntegrated ControlGene Expression Regulation PlantStress Physiological[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPlant ImmunityVitisOxylipinslcsh:ScienceBiologyGlucansComputingMilieux_MISCELLANEOUSDisease ResistancePlant Diseases2. Zero hungerMultidisciplinaryCell DeathPlant Biochemistrylcsh:R010401 analytical chemistryCell MembraneCrop DiseasesCorrectionAgricultureOrganic FarmingSustainable Agriculture0104 chemical sciences[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyOomyceteslcsh:QPest ControlAgrochemicalsReactive Oxygen SpeciesSalicylic AcidTranscriptome010606 plant biology & botanyResearch ArticleSignal TransductionPLoS ONE
researchProduct

Antifungal activity of peracetic acid against toxigenic fungal contaminants of maize and barley at the postharvest stage

2021

Abstract Contamination of maize and barley grain during storage by the toxigenic fungi Aspergillus flavus (A. flavus) and Penicillium Verrucosum (P. verrucosum) is both an economic and a public health problem, especially in less industrialized countries. Peracetic acid (PA) is a compound used for the disinfection of food and food contact surfaces. Unlike other disinfectants, it leaves no toxic residues and its decomposition products (CH3COOH, O2 and H2O) are environmentally friendly. In order to apply PA to preserve maize and barley grain during storage, first, the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) against both fungi were determined in a 96-we…

0106 biological sciencesbiologyFilter paperChemistryInoculationAspergillus flavus04 agricultural and veterinary sciencesContaminationbiology.organism_classification040401 food science01 natural sciencesMinimum inhibitory concentrationchemistry.chemical_compound0404 agricultural biotechnology010608 biotechnologyPeracetic acidPenicillium verrucosumPostharvestFood scienceFood ScienceLWT
researchProduct

Biopreservation of tomatoes using fermented media by lactic acid bacteria

2020

Abstract Post-harvest spoilage fungi in tomatoes represent an economic loss for industry and consumers. There is currently an increasing demand for novel applications of bio-preservatives as replacers of chemical additives and pesticides in food. In this study, nine lactic acid bacteria strains isolated from tomato and sourdough were screened for antifungal activity in vitro against 33 fungal strains and used as bio-preservatives of tomato inoculated with Penicillium expansum and Aspergillus flavus. The identification of the compounds potentially responsible for the antifungal activity, such as organic acids, phenolic acids and volatile organic compounds (VOCs), were identified and quantifi…

0106 biological sciencesbiologyFood spoilagefood and beveragesAspergillus flavus04 agricultural and veterinary sciencesBiopreservationbiology.organism_classification040401 food science01 natural sciencesLactic acidchemistry.chemical_compound0404 agricultural biotechnologychemistry010608 biotechnologyFermentationFood sciencePenicillium expansumLactobacillus plantarumBacteriaFood ScienceLWT
researchProduct