Search results for "BIODEGRADABLE"
showing 10 items of 141 documents
Recycling of a starch-based biodegradable polymer
2002
A new starch-based polymeric system, ZI1OU from Novamont, mainly composed of starch and polycaprolactone, was reprocessed several times in an extruder to investigate the recyclability of this biodegradable polymer. A previous investigation of the thermomechanical degradation in a mixer has been also done. The degradation is mostly due to the thermal stress but the presence of the mechanical stress strongly increases the degradation kinetic. During melt processing two concurrent processes take place: the first is the degradation, i.e. the breaking and shortening of polymeric chains, mostly occurring in the PCL phase; the second is the formation of some crosslinked structure in the starch pha…
DRUG DELIVERY FROM MUCOADHESIVE DISKS BASED ON A PHOTO-CROSS-LINKABLE POLYASPARTAMIDE DERIVATIVE
2005
Disks for local delivery of amoxicillin to the buccal or gastric cavity were prepared using as starting polymer a polyaspartamide derivative. In particular, α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) was derivatized with glycidyl methacrylate (GMA) in order to synthesize PHG, a photo-cross-linkable and biodegradable polymer that gives rise to the formation of a chemical hydrogel (PHG-UV) by UV irradiation. This hydrogel was shaped as disks whose mucoadhesive properties have been confirmed by swelling measurements in phosphate buffer/citric acid solution at pH 7.0 in the presence of various concentrations of mucin. Swelling ability of PHG-UV disks was also evaluated in simulated saliva…
New approach for synthesis of poly(ethylglyoxylate) using Maghnite-H + , an Algerian proton exchanged montmorillonite clay, as an eco-catalyst
2017
International audience; In this works, we have explored a new method for a green synthesis of poly(ethylglyoxylate) (PEtG). This method consists on using a montmorillonite clay called Maghnite-H+ as an eco-catalyst to replace triethylamine which is toxic. Cationic polymerization experiments are performed in bulk conditions at three temperatures (-40 degrees C, 25 degrees C, 80 degrees C) and in THF solutions at room temperature (25 degrees C). At 25 degrees C, an optimum ratio of 5 wt% of catalyst leads to molar masses up to 22000 g/mol in THF solutions. Polymerizations in bulk conditions lead to slightly lower masses than experiments conducted in THF solutions. However, bulk polymerization…
Heat-Resistant Fully Bio-Based Nanocomposite Blends Based on Poly(lactic acid)
2013
Poly(lactic acid) (PLA) is melt mixed with polyamide 11 (PA11) to obtain a heat-resistant fully bio-based blend with PLA as the dominant component. The goal is achieved by adding small amounts of organoclay (OMMT), which is used to manipulate the blend microstructure. The selective positioning of the OMMT inside the PA11 and at the PLA/PA11 interface turns the blend morphology from drop/matrix into co-continuous at high PLA content (70 wt%). The OMMT-rich PA11 framework that interpenetrates the major PLA phase effectively contributes to bear stresses, and the nanocomposite blend keeps its structural integrity up to ≈160 °C, i.e., about 100 °C above the PLA glass transition.
Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o)ides: Introducing Biodegradable PeptoStars
2017
tar-like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three-arm star-like polypept(o)ide (polysarcosine-block-polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth-like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star-like homo and block copolymers are synthesized by living nucleophilic ring opening polymerizat…
Biopolymeric bilayer films produced by co-extrusion film blowing
2018
Abstract Biodegradable packaging promises a more environmentally friendly future. Nevertheless, a single biopolymer often lacks of some important properties. In order to contribute to this challenge, biodegradable bilayer films from poly(lactic acid) (PLA) and MaterBi® were prepared in this work and compared with monolayer films obtained with both the polymers. The prepared films were fully characterized through morphological, mechanical, thermal, chemical, optical and water contact angle analyses. Furthermore, the hydrolytic degradation of monolayer and bilayer films was studied by performing tests at three different pH. The morphological analysis revealed that PLA/MaterBi bilayer films sh…
Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins
2010
Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human…
Influence of photo-oxidation on the performance and soil degradation of oxo- and biodegradable polymer-based items for agricultural applications
2021
Abstract The examination of the aging behavior of polymers, blends, composites, items, etc. under different environmental conditions is a priority issue for assessing the possible applications and establishing the lifetime. In agriculture, plastic items (mulch films, irrigation tubes, etc.) are widely used and subjected to solar UV exposure that can induce photo-oxidation on macromolecular chains. Therefore, weathering under outdoor conditions and accelerated degradation tests are performed for simulating aging processes during the lifetime of materials and select appropriate stabilizers to be used. In the last decades, oxo- and biodegradable polymers have been investigated and used in agri…
Effect of the remaining lanthanide catalysts on the hydrolytic and enzymatic degradation of poly-(ε-caprolactone)
2003
Poly-(e-caprolactone) is a biodegradable polymer, which can be used for both medical and environmental applications. Due to its multiple applications the synthesis of such a polymer has been attracting an increasing attention in the past few decades. In our work, the polymers were synthesised by bulk polymerisation, using different lanthanide halides as initiators. The lanthanide derivatives are known as very active catalysts in the ring-opening polymerisation of cyclic esters. Moreover, they are not toxic in comparison of catalysts, which are usually used for this synthesis. In this paper, the influence of the lanthanides on both the hydrolytic and enzymatic degradation of the PCL obtained…
Polymer-liposome nanoparticles obtained by the electrostatic bio-adsorption of natural polymers onto soybean lecithin liposomes
2012
This work is focused on the formulation of polymer-liposome nanoparticles based on the electrostatic bio-adsorption of natural polymers onto soybean lecithin liposomes, with potential as novel delivery system for macromolecules, such as proteins. The building up of the polymer-liposome nanoparticles was achieved through the alternating bio-adsorption of natural cationic (chitosan) and neutral (dextran) or anionic (dextran sulphate or alginate) polymer layers on a core composed by anionic nanosized soybean lecithin liposomes. The electrostatic bio-adsorption of natural polymers succeeded in building nanosized, spherical, monodisperse and stable polymer-liposome nanoparticles with cumulative …