Search results for "Biocompatibility"

showing 10 items of 233 documents

Inorganic Janus particles for biomedical applications.

2014

Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial pro…

Materials scienceBiocompatibilitysynthesisJanus particlesGeneral Physics and AstronomyNanoparticleNanotechnologyJanus particlesProtein CoronaReviewlcsh:Chemical technologylcsh:TechnologyNanomaterialshetero-nanoparticlesprotein coronaMulti-photon)AmphiphileNanotechnologylcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:ScienceNanoscopic scalePlasmonlcsh:Tbioimaging (CTlcsh:QC1-999Nanosciencelcsh:Qlcsh:PhysicsMRIBeilstein journal of nanotechnology
researchProduct

Mechanical characterization of rose bengal and green light crosslinked collagen scaffolds for regenerative medicine

2021

Abstract Collagen is one of the most important biomaterials for tissue engineering approaches. Despite its excellent biocompatibility, it shows the non-negligible disadvantage of poor mechanical stability. Photochemical crosslinking with rose bengal and green light (RGX) is an appropriate method to improve this property. The development of collagen laminates is helpful for further adjustment of the mechanical properties as well as the controlled release of incorporated substances. In this study, we investigate the impact of crosslinking and layering of two different collagen scaffolds on the swelling behavior and mechanical behavior in micro tensile tests to obtain information on its wearin…

Materials scienceBiocompatibilitythickness analysiscollagen type Imicro tensile testingModulusControlled releaseBiomaterialscollagen laminatescell–collagen interactionsTissue engineeringrose bengal and green light crosslinkingUltimate tensile strengthmedicineAcademicSubjects/SCI01410Swellingmedicine.symptomElongationComposite materialDuctilityAcademicSubjects/MED00010Research ArticleRegenerative Biomaterials
researchProduct

Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings

2015

[EN] Thermal annealing at 400 degrees C of perylenetetracarboxylic anhydride in low molecular mass PEG gives rise to the formation of well defined nanoobjects of 2.5 nm height and size distribution from 10 to 65 nm (average 40 nm) after purification of the raw mixture with silicagel chromatography. TEM reveals that the flat nanoobjects are constituted of concentric graphenic rings (0.34 nm interlayer distance). The morphology of the nanoparticles resembles onion rings of nanometric dimensions (nanoonion rings C-NOR). C-NOR particles have an excitation dependent emission with lambda(em) from 430 to 570 nm and a maximum emission quantum yield of 0.49. C-NOR particles can be internalized into …

Materials scienceCell SurvivalPolymerschemistry.chemical_elementNanoparticleQuantum yieldBiocompatible MaterialsPhotochemistryMicroscopy Atomic ForceIn-vitroQUIMICA ORGANICAComplexesEuropiumCell Line TumorSpectroscopy Fourier Transform InfraredOnionsFluorescence microscopeOrganic chemistryHumansFluorescentGeneral Materials ScienceHigh-pressureschemistry.chemical_classificationCarbon nanoonion ringQuantum dotsPolymerFluorescenceCarbonDynamic Light ScatteringHydrocarbonsNanostructuresPhotoluminiscencechemistryMicroscopy FluorescenceQuantum dotBiocompatibilityPerylenetetracarboxylic anhydride.EuropiumCarbon
researchProduct

Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials.

2020

Sore, infected wounds are a major clinical issue, and there is thus an urgent need for novel biomaterials as multifunctional constituents for dressings. A set of biocomposites was prepared by solvent casting using different concentrations of carboxymethylcellulose (CMC) and exfoliated graphene oxide (Exf-GO) as a filler. Exf-GO was first obtained by the strong oxidation and exfoliation of graphite. The structural, morphological and mechanical properties of the composites (CMCx/Exf-GO) were evaluated, and the obtained composites were homogenous, transparent and brownish in color. The results confirmed that Exf-GO may be homogeneously dispersed in CMC. It was found that the composite has an i…

Materials scienceComposite numberOxide02 engineering and technology010402 general chemistry01 natural scienceslcsh:TechnologyArticlelaw.inventionmedical deviceschemistry.chemical_compoundbiocompatibilitylawGeneral Materials ScienceGraphitelcsh:Microscopygraphene oxide nanocompositeSettore CHIM/02 - Chimica Fisicalcsh:QC120-168.85carboxymethyl celluloseNanocompositelcsh:QH201-278.5Graphenelcsh:T021001 nanoscience & nanotechnologyCastingExfoliation joint0104 chemical sciencesSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringlcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials (Basel, Switzerland)
researchProduct

Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring.

2015

In the present work new highly biocompatible nanovesicles were developed using polyanion sodium hyaluronate to form polymer immobilized vesicles, so called hyalurosomes. Curcumin, at high concentration was loaded into hyalurosomes and physico-chemical properties and in vitro/in vivo performances of the formulations were compared to those of liposomes having the same lipid and drug content. Vesicles were prepared by direct addition of dispersion containing the polysaccharide sodium hyaluronate and the polyphenol curcumin to a commercial mixture of soy phospholipids, thus avoiding the use of organic solvents. An extensive study was carried out on the physico-chemical features and properties o…

Materials scienceCurcuminBiocompatibilitySwineSodium hyaluronateBiophysicsBioengineeringDermatitisBiomaterialschemistry.chemical_compoundMicroscopy Electron TransmissionHyaluronic acidAnimalsHumansHyaluronic AcidCells CulturedSkinLiposomeWound HealingVesiclechemistryBiochemistryMechanics of MaterialsCeramics and CompositesCurcuminNanocarriersWound healingBiomaterials
researchProduct

Multi-scale structural analysis of xyloglucan colloidal dispersions and hydro-alcoholic gels

2020

Xyloglucans are highly branched, hydroxyl rich polyglucans that for their abundance in nature, biocompatibility, film forming and gelation ability may take a prominent role in the design and fabrication of biomedical devices, including in situ forming scaffolds for tissue engineering, wound dressings and epidermal sensors. The understanding and exploitation of their self-assembly behavior is key for the device performance optimization. A multi-scale analysis, conducted combining small-angle X-ray scattering, both static and dynamic light scattering at large and small angles, and rheological measurements, provides a description of the supramolecular organization of this biopolymer, from the …

Materials scienceFabricationPolymers and PlasticsBiocompatibilitySupramolecular chemistry02 engineering and technologyengineering.material010402 general chemistry01 natural scienceschemistry.chemical_compoundColloidDynamic light scatteringRheologyRHEOLOGYSupramolecular structureXyloglucanDYNAMIC LIGHT-SCATTERINGHydrogelsSelf-assembly021001 nanoscience & nanotechnologyGELATION0104 chemical sciencesXyloglucanHydrogelchemistryChemical engineeringengineeringSettore CHIM/07 - Fondamenti Chimici Delle TecnologieBiopolymer0210 nano-technology
researchProduct

Survival and differentiation of embryonic neural explants on different biomaterials

2006

Biomaterials prepared from polyacrylamide, ethyl acrylate (EA), and hydroxyethyl acrylate (HEA) in various blend ratios, methyl acrylate and chitosan, were tested in vitro as culture substrates and compared for their ability to be colonized by the cells migrating from embryonic brain explants. Neural explants were isolated from proliferative areas of the medial ganglionic eminence and the cortical ventricular zone of embryonic rat brains and cultured in vitro on the different biomaterials. Chitosan, poly(methyl acrylate), and the 50% wt copolymer of EA and HEA were the most suitable substrates to promote cell attachment and differentiation of the neural cells among those tested. Immunofluor…

Materials scienceGanglionic eminenceBiocompatibilityCellular differentiationBiomedical EngineeringBiocompatible MaterialsIn Vitro TechniquesBiomaterialschemistry.chemical_compoundCell MovementMaterials TestingAnimalsNerve TissueProgenitor cellMethyl acrylateStem CellsMetals and AlloysBiomaterialCell DifferentiationEmbryonic stem cellRatsCell biologychemistryCeramics and CompositesEthyl acrylateBiomedical engineeringJournal of Biomedical Materials Research Part A
researchProduct

Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications.

2017

The innate ability of poly(N-isopropylacrylamide) (PNIPAAm) thermo-responsive hydrogel to copolymerize and to graft synthetic polymers and biomolecules, in conjunction with the highly controlled methods of radical polymerization which are now available, have expedited the widespread number of papers published in the last decade—especially in the biomedical field. Therefore, PNIPAAm-based hydrogels are extensively investigated for applications on the controlled delivery of active molecules, in self-healing materials, tissue engineering, regenerative medicine, or in the smart encapsulation of cells. The most promising polymers for biodegradability enhancement of PNIPAAm hydrogels are probably…

Materials sciencePolymers and PlasticsBiocompatibilityPolymersRadical polymerizationthermo-responsive polymerBiocompatibilitatBioengineeringNanotechnology02 engineering and technologyReviewmacromolecular substances010402 general chemistry01 natural sciencesBiomaterialslcsh:Chemistrychemistry.chemical_compoundbiocompatibility:Enginyeria química [Àrees temàtiques de la UPC]Tissue engineeringlcsh:General. Including alchemybiodegradabilityPolymer chemistryCopolymerlcsh:Inorganic chemistrycopolymerspoly(N-isopropylacrylamide)lcsh:Sciencechemistry.chemical_classificationOrganic Chemistry4D-printingtechnology industry and agriculturePolymer021001 nanoscience & nanotechnologylcsh:QD146-1973. Good health0104 chemical sciencesCopolímerschemistrylcsh:QD1-999Self-healing hydrogelsPoly(N-isopropylacrylamide)lcsh:Q0210 nano-technologyEthylene glycollcsh:QD1-65Gels (Basel, Switzerland)
researchProduct

Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds

2011

Bone tissue interfacial scaffolds, which encourage cell growth, are critical determinants for clinical success after implant surgery. Over the years, a number of resorbable configurations have emerged for bone cell support and growth, but only a few have demonstrated clinical efficacy. Polymer coatings produced by electrospinning are regarded as very promising bone interfaces because of the ultrathin-scaled dimensions of its physical structure. In this study, the morphology, composition, thermal properties, and cell growth viability of a number of polylactide-based systems containing different binary and ternary formulations of this biomaterial with collagen and commercial hydroxyapatite na…

Materials sciencePolymers and PlasticsBiocompatibilityScanning electron microscopeBiomaterialGeneral ChemistryBone tissueElectrospinningSurfaces Coatings and Filmslaw.inventionmedicine.anatomical_structureOptical microscopelawBone cellMaterials ChemistrymedicineClinical efficacyComposite materialJournal of Applied Polymer Science
researchProduct

ePTFE functionalization for medical applications

2021

Abstract Polytetrafluoroethylene (PTFE) is a ubiquitous material used in implants and medical devices in general due to its high biocompatibility and inertness; blood vessels, heart, jawbone, nose, eyes, or abdominal wall can benefit from its properties in the case of disease or injury. Its expanded version, ePTFE, is an improved version of PTFE with better mechanical properties, which extend its medical applications. However, ePTFE implants often lack improvement in properties such as antibacterial, antistenosis, or tissue integration properties. Improvements in these properties by several strategies of functionalization for medical purposes are discussed in this review. Covalent and non-c…

Materials sciencePolytetrafluoroethylenePolymers and PlasticsBiocompatibilityCell seedingTissue integration02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialschemistry.chemical_compoundColloid and Surface ChemistrychemistryMaterials ChemistrySurface modification0210 nano-technologyBiomedical engineeringMaterials Today Chemistry
researchProduct