Search results for "Bounds"

showing 10 items of 298 documents

Random Walk in a N-cube Without Hamiltonian Cycle to Chaotic Pseudorandom Number Generation: Theoretical and Practical Considerations

2017

Designing a pseudorandom number generator (PRNG) is a difficult and complex task. Many recent works have considered chaotic functions as the basis of built PRNGs: the quality of the output would indeed be an obvious consequence of some chaos properties. However, there is no direct reasoning that goes from chaotic functions to uniform distribution of the output. Moreover, embedding such kind of functions into a PRNG does not necessarily allow to get a chaotic output, which could be required for simulating some chaotic behaviors. In a previous work, some of the authors have proposed the idea of walking into a $\mathsf{N}$-cube where a balanced Hamiltonian cycle has been removed as the basis o…

FOS: Computer and information sciencesUniform distribution (continuous)Computer Science - Cryptography and SecurityComputer scienceHamiltonian CycleChaoticPseudorandom Numbers GeneratorFOS: Physical sciences02 engineering and technology[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]01 natural sciencesUpper and lower bounds[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computingsymbols.namesake[INFO.INFO-MC]Computer Science [cs]/Mobile Computing[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]0202 electrical engineering electronic engineering information engineeringApplied mathematics[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]0101 mathematicsEngineering (miscellaneous)Pseudorandom number generatorChaotic IterationsBasis (linear algebra)Applied Mathematics020208 electrical & electronic engineering010102 general mathematicsRandom walkNonlinear Sciences - Chaotic DynamicsHamiltonian path[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationNonlinear Sciences::Chaotic Dynamics[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]Modeling and SimulationRandom Walk[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]symbolsPseudo random number generator[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]Chaotic Dynamics (nlin.CD)[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM][INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]Cryptography and Security (cs.CR)
researchProduct

Exponential sums related to Maass forms

2019

We estimate short exponential sums weighted by the Fourier coefficients of a Maass form. This requires working out a certain transformation formula for non-linear exponential sums, which is of independent interest. We also discuss how the results depend on the growth of the Fourier coefficients in question. As a byproduct of these considerations, we can slightly extend the range of validity of a short exponential sum estimate for holomorphic cusp forms. The short estimates allow us to reduce smoothing errors. In particular, we prove an analogue of an approximate functional equation previously proven for holomorphic cusp form coefficients. As an application of these, we remove the logarithm …

FOURIER COEFFICIENTSPure mathematicsLogarithmHolomorphic function01 natural sciencesUpper and lower boundsAPPROXIMATE FUNCTIONAL-EQUATIONFunctional equationFOS: Mathematics111 MathematicsNumber Theory (math.NT)0101 mathematicsFourier coefficients of cusp formsFourier seriesexponential sumsMathematicsAlgebra and Number TheoryMathematics - Number Theory010102 general mathematicsVoronoi summation formulaCusp formADDITIVE TWISTSExponential functionSQUAREExponential sumRIEMANN ZETA-FUNCTION
researchProduct

Robust H;<inf>∞</inf> filtering for 2-D FM systems: A finite frequency approach

2012

This paper investigates the problem of robust H; ∞ filtering for uncertain two-dimensional (2-D) discrete systems in the Fornasini-Marchesini local state-space (FM LSS) model with polytopic uncertain parameters. The goal of the paper is to design filters such that the finite frequency (FF) H; ∞ norm of the filtering error system has a specified upper bound for all uncertainties. A generalized bounded real lemma (BRL) is first derived for FF H; ∞ performance analysis of nominal 2-D FM LSS systems, and then a method, in terms of solving optimization problems with LMI constraints, is presented for robust FF H; ∞ filter analysis and design. An illustrative example is given to show the improveme…

Filter designFilter analysisOptimization problemControl theoryNorm (mathematics)Uncertain systemsUpper and lower boundsBounded real lemmaMathematics2012 IEEE 51st IEEE Conference on Decision and Control (CDC)
researchProduct

Bounding the number of vertices in the degree graph of a finite group

2020

Abstract Let G be a finite group, and let cd ( G ) denote the set of degrees of the irreducible complex characters of G . The degree graph Δ ( G ) of G is defined as the simple undirected graph whose vertex set V ( G ) consists of the prime divisors of the numbers in cd ( G ) , two distinct vertices p and q being adjacent if and only if pq divides some number in cd ( G ) . In this note, we provide an upper bound on the size of V ( G ) in terms of the clique number ω ( G ) (i.e., the maximum size of a subset of V ( G ) inducing a complete subgraph) of Δ ( G ) . Namely, we show that | V ( G ) | ≤ max { 2 ω ( G ) + 1 , 3 ω ( G ) − 4 } . Examples are given in order to show that the bound is bes…

Finite groupAlgebra and Number Theory20C15010102 general mathematicsGroup Theory (math.GR)01 natural sciencesUpper and lower boundsGraphVertex (geometry)CombinatoricsBounding overwatch0103 physical sciencesFOS: MathematicsMaximum size010307 mathematical physics0101 mathematicsUndirected graphMathematics - Group TheoryClique numberMathematicsJournal of Pure and Applied Algebra
researchProduct

Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants

2020

We provide a quantitative lower bound to the Cheeger constant of a set $\Omega$ in both the Euclidean and the Gaussian settings in terms of suitable asymmetry indexes. We provide examples which show that these quantitative estimates are sharp.

Gaussianmedia_common.quotation_subject01 natural sciencesUpper and lower boundsAsymmetryOmegaCombinatoricsSet (abstract data type)Cheeger sets; Cheeger constant; quantitative inequalitiessymbols.namesakeMathematics - Analysis of PDEsEuclidean geometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsepäyhtälötMathematicsmedia_common49Q10 49Q20 39B62osittaisdifferentiaaliyhtälöt010102 general mathematicsCheeger constantCheeger setsArticlesCheeger constant (graph theory)010101 applied mathematicssymbolsquantitative inequalitiesAnalysis of PDEs (math.AP)Annales Fennici Mathematici
researchProduct

F-signature of pairs: Continuity, p-fractals and minimal log discrepancies

2011

This paper contains a number of observations on the {$F$-signature} of triples $(R,\Delta,\ba^t)$ introduced in our previous joint work. We first show that the $F$-signature $s(R,\Delta,\ba^t)$ is continuous as a function of $t$, and for principal ideals $\ba$ even convex. We then further deduce, for fixed $t$, that the $F$-signature is lower semi-continuous as a function on $\Spec R$ when $R$ is regular and $\ba$ is principal. We also point out the close relationship of the signature function in this setting to the works of Monsky and Teixeira on Hilbert-Kunz multiplicity and $p$-fractals. Finally, we conclude by showing that the minimal log discrepancy of an arbitrary triple $(R,\Delta,\b…

General Mathematics010102 general mathematicsRegular polygonMultiplicity (mathematics)Mathematics - Commutative AlgebraCommutative Algebra (math.AC)01 natural sciencesUpper and lower bounds13A35 13D40 14B05 13H10 14F18CombinatoricsMathematics - Algebraic GeometryFractalClose relationship0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsAlgebraic Geometry (math.AG)Mathematics
researchProduct

Reciprocal lower bound on modulus of curve families in metric surfaces

2019

We prove that any metric space $X$ homeomorphic to $\mathbb{R}^2$ with locally finite Hausdorff 2-measure satisfies a reciprocal lower bound on modulus of curve families associated to a quadrilateral. More precisely, let $Q \subset X$ be a topological quadrilateral with boundary edges (in cyclic order) denoted by $\zeta_1, \zeta_2, \zeta_3, \zeta_4$ and let $\Gamma(\zeta_i, \zeta_j; Q)$ denote the family of curves in $Q$ connecting $\zeta_i$ and $\zeta_j$; then $\text{mod} \Gamma(\zeta_1, \zeta_3; Q) \text{mod} \Gamma(\zeta_2, \zeta_4; Q) \geq 1/\kappa$ for $\kappa = 2000^2\cdot (4/\pi)^2$. This answers a question concerning minimal hypotheses under which a metric space admits a quasiconfor…

General Mathematics010102 general mathematicsquasiconformal mappingModulusMetric Geometry (math.MG)uniformizationconformal modulusCoarea inequalitymetriset avaruudet01 natural sciencesUpper and lower boundsfunktioteoriaCombinatoricsMathematics - Metric Geometry30L100103 physical sciencesMetric (mathematics)FOS: Mathematics010307 mathematical physics0101 mathematicsReciprocalMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Accessible parts of boundary for simply connected domains

2018

For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…

General MathematicsBoundary (topology)30C35 26D1501 natural sciencesUpper and lower boundsOmegaDomain (mathematical analysis)CombinatoricsfunktioteoriaHardy inequality0103 physical sciencesSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: MathematicsComplex Variables (math.CV)0101 mathematicsepäyhtälötMathematicsPointwiseMathematics - Complex VariablesApplied Mathematics010102 general mathematicsta111simply connected domainsMathematics - Classical Analysis and ODEsBounded functionContent (measure theory)010307 mathematical physicsJohn domainsProceedings of the American Mathematical Society
researchProduct

Motzkin subposets and Motzkin geodesics in Tamari lattices

2014

The Tamari lattice of order n can be defined by the set D n of Dyck words endowed with the partial order relation induced by the well-known rotation transformation. In this paper, we study this rotation on the restricted set of Motzkin words. An upper semimodular join semilattice is obtained and a shortest path metric can be defined. We compute the corresponding distance between two Motzkin words in this structure. This distance can also be interpreted as the length of a geodesic between these Motzkin words in a Tamari lattice. So, a new upper bound is obtained for the classical rotation distance between two Motzkin words in a Tamari lattice. For some specific pairs of Motzkin words, this b…

GeodesicSemilattice0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM][ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesUpper and lower boundsTheoretical Computer ScienceCombinatorics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsDiscrete mathematicsMathematics::Combinatorics010102 general mathematics[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]Join (topology)Computer Science ApplicationsJoin and meet010201 computation theory & mathematicsSignal ProcessingMotzkin numberTamari latticeRotation (mathematics)Computer Science::Formal Languages and Automata TheoryInformation Systems
researchProduct

A PHENOMENOLOGICAL OPERATOR DESCRIPTION OF INTERACTIONS BETWEEN POPULATIONS WITH APPLICATIONS TO MIGRATION

2013

We adopt an operatorial method based on the so-called creation, annihilation and number operators in the description of different systems in which two populations interact and move in a two-dimensional region. In particular, we discuss diffusion processes modeled by a quadratic hamiltonian. This general procedure will be adopted, in particular, in the description of migration phenomena. With respect to our previous analogous results, we use here fermionic operators since they automatically implement an upper bound for the population densities.

Heisenberg-like dynamicsComputer scienceApplied MathematicsPopulations and Evolution (q-bio.PE)FOS: Physical sciencesDynamics of competing populations with diffusion; Fermionic operators; Heisenberg-like dynamicsUpper and lower boundssymbols.namesakeQuadratic equationOperator (computer programming)Biological Physics (physics.bio-ph)Particle number operatorFOS: Biological sciencesModeling and SimulationsymbolsPhysics - Biological PhysicsStatistical physicsQuantitative Biology - Populations and EvolutionHamiltonian (quantum mechanics)Settore MAT/07 - Fisica MatematicaDynamics of competing populations with diffusionquantum tools for classical systemsFermionic operatorsMathematical Models and Methods in Applied Sciences
researchProduct