Search results for "CD36."

showing 10 items of 78 documents

Cluster-determinant 36 (CD36) impacts on vitamin E postprandial response

2014

International audience; Scope: A single nucleotide polymorphism in the cluster determinant 36 (CD36) gene has recently been associated with plasma alpha-tocopherol concentration, suggesting a possible role of this protein in vitamin E intestinal absorption or tissue uptake. Methods and results: To investigate the involvement of CD36 in vitamin E transport, we first evaluated the effect of CD36 on alpha- and gamma-tocopherol transmembrane uptake and efflux using transfected HEK cells. gamma-Tocopherol postprandial response was then assessed in CD36-deficient mice compared with wild-type mice, after the mice had been fully characterized for their alpha -tocopherol, vitamin A and lipid plasma,…

CD36 AntigensMaleGenetically modified mouseVitaminmedicine.medical_specialtyBioavailability[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionCD36medicine.medical_treatmentalpha-TocopherolBiologyPolymorphism Single NucleotideIntestinal absorptionMice03 medical and health scienceschemistry.chemical_compoundInternal medicinemedicineAnimalsHumansTransgenic miceVitamin ATriglyceridesComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesgamma-TocopherolIntestinal absorptionVitamin E030302 biochemistry & molecular biologyHypertriglyceridemiaLipid metabolismLipid MetabolismPostprandial Periodmedicine.disease[SDV.AEN] Life Sciences [q-bio]/Food and NutritionCholesterolHEK293 CellsEndocrinologyPostprandialLiverchemistrybiology.proteinFemalelipids (amino acids peptides and proteins)CD36[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFood ScienceBiotechnologyMolecular Nutrition & Food Research
researchProduct

CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures

2011

International audience; Scope: Carotenoids are mainly stored in adipose tissue. However, nothing is known regarding the uptake of carotenoids by adipocytes. Thus, our study explored the mechanism by which lycopene and lutein, two major human plasma carotenoids, are transported. Methods and results: CD36 was a putative candidate for this uptake, 3T3-L1 cells were treated with sulfosuccinimidyl oleate, a CD36-specific inhibitor. sulfosuccinimidyl oleate-treated cells showed a significant decrease in both lycopene and lutein uptake as compared to control cells. Their uptake was also decreased by partial inhibition of CD36 expression using siRNA, whereas the overexpression of CD36 in Cos-1 cell…

CD36 AntigensMaleLutein030309 nutrition & dieteticsCD36[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionLYCOPENEAdipose tissueOleic Acidschemistry.chemical_compoundMiceChlorocebus aethiopsRNA Small InterferingCAROTENOIDSCarotenoidComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationMice KnockoutGENE CD360303 health sciencesbiologyCD 36food and beveragesLycopene3. Good healthADIPOCYTESADIPOSE TISSUEBiochemistryCOS CellsRNA InterferenceBiotechnologyAdipose tissue macrophagesAdipose Tissue WhiteSuccinimides03 medical and health sciencesOrgan Culture Techniques3T3-L1 CellsTRANSPORTEUR BIOLOGIQUEparasitic diseasesAnimalsHumans030304 developmental biologyBiological Transport[SDV.AEN] Life Sciences [q-bio]/Food and NutritionGLYCOPROTEINRchemistryLUTEINbiology.protein[SDV.AEN]Life Sciences [q-bio]/Food and NutritionEx vivoFood ScienceExplant culture
researchProduct

Decreasing dietary linoleic acid promotes long chain omega-3 fatty acid incorporation into rat retina and modifies gene expression

2011

International audience; Age-related macular degeneration (AMD) may be partially prevented by dietary habits privileging the consumption of ω3 long chain polyunsaturated fatty acids (ω3s) while lowering linoleic acid (LA) intake. The present study aimed to document whether following these epidemiological guidelines would enrich the neurosensory retina and RPE with ω3s and modulate gene expression in the neurosensory retina. Rat progenitors and pups were fed with diets containing low or high LA, and low or high ω3s. After scotopic single flash and 8-Hz-Flicker electroretinography, rat pups were euthanized at adulthood. The fatty acid profile of the neurosensory retina, RPE, liver, adipose tis…

CD36 AntigensMaleMESH : RNA MessengerMESH: 5-Lipoxygenase-Activating ProteinsMESH : Receptors LDLMESH: Electroretinography0302 clinical medicineMESH: Fatty Acids Omega-3MESH: AnimalsMESH : Retinal Ganglion Cellschemistry.chemical_classification0303 health sciencesMESH : Gene Expression RegulationMESH : ElectroretinographyMESH: RetinaMESH: Chromatography GasMESH: Dietary Fats Unsaturateddocosahexaenoic acidpolyunsaturated fatty acidSensory Systems3. Good healthnutritionMESH: Photic StimulationAdipose TissueMESH: Adipose Tissuemedicine.medical_specialtyChromatography Gasmacular degenerationLinoleic acidMESH : Arachidonate 12-LipoxygenaseArachidonate 12-LipoxygenaseMESH : Adipose TissueMESH: Arachidonate 12-Lipoxygenasepufa03 medical and health sciencesMESH : Dietary Fats UnsaturatedlipidElectroretinographyRats Long-EvansRNA MessengerMESH: Linoleic AcidMESH: Antigens CD36MESH : RetinaFatty acidMESH: Retinal Ganglion Cellseye diseasesOphthalmologyEndocrinologychemistryMESH: Receptors LDL030221 ophthalmology & optometryATP-Binding Cassette Transportersn 3MESH: FemalePhotic StimulationMESH: LiverRetinal Ganglion CellsretinaMESH : 5-Lipoxygenase-Activating Proteinsgenetic structures[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionretinal pigment epitheliumelectroretinogramMESH : Photic StimulationAdipose tissueangiogenesischemistry.chemical_compoundMESH : FemaleMESH : Rats Long-Evans2. Zero hungermedicine.diagnostic_testMESH : RatsMESH: Real-Time Polymerase Chain ReactionMESH: Gene Expression RegulationMESH : Antigens CD36medicine.anatomical_structureLiverALOX12BiochemistryMESH: ATP-Binding Cassette TransportersFemaleATP Binding Cassette Transporter 1Polyunsaturated fatty acidMESH : Fatty Acids Omega-3MESH: RatsbrainMESH : Male5-Lipoxygenase-Activating ProteinsMESH : Real-Time Polymerase Chain Reactionrhesus monkeyBiologyReal-Time Polymerase Chain ReactionMESH : Chromatography GasLinoleic AcidCellular and Molecular NeuroscienceDietary Fats UnsaturatedMESH : Linoleic AcidMESH: Rats Long-EvansInternal medicineFatty Acids Omega-3medicineAnimalsMESH : ATP-Binding Cassette TransportersOmega 3 fatty acidMESH: RNA Messenger030304 developmental biologydeficient dietRetinal pigment epitheliumMESH : LiverMESH: MaleRatsGene Expression RegulationReceptors LDLgene expressionMESH : Animalssense organs[SDV.AEN]Life Sciences [q-bio]/Food and NutritionElectroretinographyExperimental Eye Research
researchProduct

Luminal Lipid Regulates CD36 Levels and Downstream Signaling to Stimulate Chylomicron Synthesis

2011

International audience; The membrane glycoprotein CD36 binds nanomolar concentrations of long chain fatty acids (LCFA) and is highly expressed on the luminal surface of enterocytes. CD36 deficiency reduces chylomicron production through unknown mechanisms. In this report, we provide novel insights into some of the underlying mechanisms. Our in vivo data demonstrate that CD36 gene deletion in mice does not affect LCFA uptake and subsequent esterification into triglycerides by the intestinal mucosa exposed to the micellar LCFA concentrations prevailing in the intestine. In rodents, the CD36 protein disappears early from the luminal side of intestinal villi during the postprandial period, but …

CD36 AntigensMaleMTPCD36[SDV]Life Sciences [q-bio]BiochemistryMicrosomal triglyceride transfer proteinMice0302 clinical medicineIntestinal mucosaCricetinaeChylomicronsLipoproteinHypertriglyceridemiaMice Knockout0303 health sciencesMitogen-Activated Protein Kinase 3biologyPostprandial PeriodLipid-binding ProteinIntestineApoB48ERKmedicine.anatomical_structurePostprandialBiochemistrylipids (amino acids peptides and proteins)Apolipoprotein B-48MAP Kinase Signaling SystemEnterocyteCHO CellsChylomicron03 medical and health sciencesCricetulusparasitic diseasesmedicineAnimalsRats WistarMolecular Biology030304 developmental biologyUbiquitinationLipid absorptionLipid metabolismCell BiologyLipid MetabolismRatsEnterocytesMetabolismbiology.proteinApolipoprotein B-48CD36[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryChylomicron
researchProduct

Fatty Acid Transporter CD36 Mediates Hypothalamic Effect of Fatty Acids on Food Intake in Rats

2013

Subject Areas: carotid arteries; emulsions; fatty acids; gene expression; heparin; hypothalamus; neurons; oxidation.; International audience; Variations in plasma fatty acid (FA) concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH) neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36). The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly m…

CD36 AntigensMaleMicrodialysismedicine.medical_specialty[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyCD36HypothalamusGene Expressionlcsh:MedicineModels BiologicalEating03 medical and health scienceschemistry.chemical_compound0302 clinical medicineIn vivoInternal medicinemedicineAnimalslcsh:SciencePhospholipids030304 developmental biology2. Zero hungerchemistry.chemical_classification0303 health sciencesMultidisciplinaryTriglyceridebiologyFatty Acidslcsh:RNeurosciences[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyFatty acidFeeding BehaviorFatty Acid Transport ProteinsRatsSoybean OilTriacsin CEndocrinologychemistryHypothalamus[ SDV.NEU.NB ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyNeurons and Cognitionbiology.proteinEmulsionslcsh:QProto-Oncogene Proteins c-fos030217 neurology & neurosurgeryEtomoxirResearch ArticlePLoS ONE
researchProduct

Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus.

2013

Since the increasing prevalence of obesity is one of the major health problems of the modern era, understanding the mechanisms of oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. We have conducted the present study on Psammomys obesus, the rodent desert gerbil which is a unique polygenic natural animal model of obesity. Our results show that obese animals exhibit a strong preference for lipid solutions in a two-bottle test. Interestingly, the expression of CD36, a lipido-receptor, in taste buds cells (TBC), isolated from circumvallate papillae, was decreased at mRNA level, but remained unaltered at protein level, in obese animals. We further st…

CD36 AntigensMaleTasteAnatomy and PhysiologyCD36BiochemistryCalcium in biologyFatschemistry.chemical_compoundMolecular Cell BiologySignaling in Cellular ProcessesMembrane Receptor Signalingchemistry.chemical_classificationMultidisciplinarybiologyQRTaste PerceptionTaste BudsLipidsSensory SystemsLipid SignalingCytochemistryThapsigarginMedicinePsammomysDisease SusceptibilityIntracellularResearch ArticleSignal Transductionmedicine.medical_specialtyThapsigarginClinical Research DesignLinoleic acidScienceLinoleic AcidFood PreferencesInternal medicinemedicineAnimalsCalcium SignalingObesityAnimal Models of DiseaseBiologyNutritionCell MembraneFatty acidProteinsbiology.organism_classificationLipid MetabolismDietary FatsGustatory SystemTransmembrane ProteinsEndocrinologyMetabolismchemistryGene Expression Regulationbiology.proteinGerbillinaeMembrane CompositionNeurosciencePLoS ONE
researchProduct

The Lipid-Sensor Candidates CD36 and GPR120 Are Differentially Regulated by Dietary Lipids in Mouse Taste Buds: Impact on Spontaneous Fat Preference

2011

BACKGROUND: Recent studies in rodents and humans suggest that the chemoreception of long-chain fatty acids (LCFA) in oral cavity is involved in the spontaneous preference for fatty foods and might contribute to the obesity risk. CD36 and GPR120 are LCFA receptors identified in rodent taste bud cells. The fact that CD36 or GPR120 gene inactivation leads to a decrease in the preference for lipids raises the question of the respective role(s) played by these gustatory lipid-sensor candidates. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of biochemical, nutritional and behavioural studies in wild-type, CD36(+/-)and CD36(-/-) mice, it was found that: 1°) CD36 and GPR120 display different …

CD36 AntigensMaleTasteChemoreceptorAnatomy and PhysiologyRodentCD36Blotting Westernlcsh:MedicineGene ExpressionReal-Time Polymerase Chain ReactionReceptors G-Protein-CoupledFood PreferencesMicebiology.animalIntegrative PhysiologyGene expressionAnimalsObesityReceptorlcsh:ScienceGeneBiologyNutritionMice KnockoutMultidisciplinarybiologylcsh:RGPR120Taste BudsDietary FatsImmunohistochemistrySensory SystemsCircadian RhythmBiochemistrybiology.proteinMedicinelipids (amino acids peptides and proteins)lcsh:QResearch ArticlePLoS ONE
researchProduct

Link between Intestinal CD36 Ligand Binding and Satiety Induced by a High Protein Diet in Mice

2012

International audience; CD36 is a ubiquitous membrane glycoprotein that binds long-chain fatty acids. The presence of a functional CD36 is required for the induction of satiety by a lipid load and its role as a lipid receptor driving cellular signal has recently been demonstrated. Our project aimed to further explore the role of intestinal CD36 in the regulation of food intake. Duodenal infusions of vehicle or sulfo-N-succinimidyl-oleate (SSO) was performed prior to acute infusions of saline or Intralipid (IL) in mice. Infusion of minute quantities of IL induced a decrease in food intake (FI) compared to saline. Infusion of SSO had the same effect but no additive inhibitory effect was obser…

CD36 AntigensMaleTime FactorsAnatomy and Physiologymedicine.medical_treatmentCD36[SDV]Life Sciences [q-bio]lcsh:MedicineOleic AcidsLigandsSatiety ResponseBiochemistryJejunumFood-intakeEatingMiceOleoylethanolamidechemistry.chemical_compound0302 clinical medicineIntestinal Mucosalcsh:ScienceReceptorSalineAnimal Management2. Zero hunger0303 health sciencesMultidisciplinaryAgricultureLipidsIntestinesmedicine.anatomical_structureSatiety Response030220 oncology & carcinogenesisChain Fatty-AcidsMedicineProtein BindingResearch ArticleReceptormedicine.medical_specialtySuccinimidesTransportBiologyBody-weightAbsorption03 medical and health sciencesInternal medicinemedicineAnimalsCholesterol UptakeBiologyNutrition030304 developmental biologyEvolutionary Biologylcsh:ROleoylethanolamideGluconeogenesisProteinsSmall intestineDietMice Inbred C57BLEndocrinologyGene Expression RegulationGluconeogenesischemistryImmunologybiology.proteinRatVeterinary Sciencelcsh:QZoology[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Upregulation of liver VLDL receptor and FAT/CD36 expressions in LDLR-/- apoB100/100 mice fed trans-10,cis-12 conjugated linoleic acid

2006

International audience; This study explores the mechanisms responsible for the fatty liver setup in mice fed trans-10,cis-12 conjugated linoleic acid (t10c12 CLA), hypothesizing that an induction of low density lipoprotein receptor (LDLR) expression is associated with lipid accumulation. To this end, the effects of t10c12 CLA treatment on lipid parameters, serum lipoproteins, and expression of liver lipid receptors were measured in LDLR(-/-) apoB(100/100) mice as a model of human familial hypercholesterolemia itself depleted of LDLR. Mice were fed t10c12 CLA over 2 or 4 weeks. We first observed that the treatment induced liver steatosis, even in the absence of LDLR. Mice treated for 2 weeks…

CD36 AntigensMaleVery low-density lipoproteinTRANSLOCASECD36RECEPTEUR SCAVENGER[SDV]Life Sciences [q-bio]FATTY ACID TRANSLOCASE030204 cardiovascular system & hematologyBiochemistryMice0302 clinical medicineEndocrinologyLinoleic Acids ConjugatedMice Knockout0303 health sciencesLipoprotein lipaselipoprotéinebiologyacide grasrécepteur d'hormoneChemistryFatty liverFatty Acidsfood and beveragesHEPATIC LIPASELipidsLOW DENSITY LIPOPROTEIN RECEPTOR3. Good healthUp-RegulationLiverSCAVENGER RECEPTOR CLASS B TYPE ILIVER STEATOSIS;LOW DENSITY LIPOPROTEIN RECEPTOR;TRIGLYCERIDE;LIPOATROPHY;LIPOPROTEIN;FATTY ACID TRANSLOCASE;VERY LOW DENSITY LIPOPROTEIN RECEPTOR;HEPATIC LIPASE;LIPOPROTEIN LIPASE;LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN;SCAVENGER RECEPTOR CLASS B TYPE I;LIPOATROPHIE;TRANSLOCASE;LIPASE HEPATIQUE;RECEPTEUR SCAVENGERApolipoprotein B-100lipoprotéine lipaseTRIGLYCERIDElipids (amino acids peptides and proteins)Oxidation-Reductionmedicine.medical_specialtyLIPASE HEPATIQUELipolysisVLDL receptorMice Transgenicacide linoléique conjugué03 medical and health sciencesstéatose hépatiqueInternal medicineLIVER STEATOSISmedicineLIPOPROTEIN LIPASEAnimalsRNA Messengerlipoprotéine de faible densite030304 developmental biologyLOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEINnutritional and metabolic diseasesCell Biologymedicine.diseaseLipid MetabolismLIPOATROPHYDietary FatsEndocrinologyLIPOPROTEINReceptors LDLVERY LOW DENSITY LIPOPROTEIN RECEPTORLIPOATROPHIELDL receptorbiology.proteinacide gras transHepatic lipaseLipoprotein
researchProduct

Expression of Putative Fatty Acid Transporter Genes Are Regulated by Peroxisome Proliferator-activated Receptor α and γ Activators in a Tissue- and I…

1998

Regulation of gene expression of three putative long-chain fatty acid transport proteins, fatty acid translocase (FAT), mitochondrial aspartate aminotransferase (mAspAT), and fatty acid transport protein (FATP), by drugs that activate peroxisome proliferator-activated receptor (PPAR) alpha and gamma were studied using normal and obese mice and rat hepatoma cells. FAT mRNA was induced in liver and intestine of normal mice and in hepatoma cells to various extents only by PPARalpha-activating drugs. FATP mRNA was similarly induced in liver, but to a lesser extent in intestine. The induction time course in the liver was slower for FAT and FATP mRNA than that of an mRNA encoding a peroxisomal en…

CD36 AntigensMalemedicine.medical_specialtyAdipatesOrganic Anion TransportersReceptors Cytoplasmic and NuclearPeroxisome proliferator-activated receptorWhite adipose tissueBiologyMicrobodiesBiochemistryMiceLiver Neoplasms ExperimentalDiethylhexyl PhthalateInternal medicineBrown adipose tissueTumor Cells CulturedmedicineAnimalsClofibrateRNA MessengerMolecular BiologyDNA Primerschemistry.chemical_classificationMembrane GlycoproteinsBase SequenceFatty Acid Transport ProteinsFatty acidTroglitazoneCell BiologyPeroxisomeRatsPyrimidinesEndocrinologymedicine.anatomical_structureAdipose TissueGene Expression RegulationLiverchemistryPeroxisome proliferator-activated receptor alphaTranscription Factorsmedicine.drugJournal of Biological Chemistry
researchProduct