Search results for "CLEO"
showing 10 items of 4423 documents
RUNX3 and T-Bet in Immunopathogenesis of Ankylosing Spondylitis—Novel Targets for Therapy?
2019
Susceptibility to ankylosing spondylitis (AS) is polygenic with more than 100 genes identified to date. These include HLA-B27 and the aminopeptidases (ERAP1, ERAP2, and LNPEPS), which are involved in antigen processing and presentation to T-cells, and several genes (IL23R, IL6R, STAT3, JAK2, IL1R1/2, IL12B, and IL7R) involved in IL23 driven pathways of inflammation. AS is also strongly associated with polymorphisms in two transcription factors, RUNX3 and T-bet (encoded by TBX21), which are important in T-cell development and function. The influence of these genes on the pathogenesis of AS and their potential for identifying drug targets is discussed here.
Mung Bean nuclease mapping of RNAs 3' end
2009
Abstract A method is described that allows an accurate mapping of 3' ends of RNAs. In this method a labeled DNA probe, containing the presumed 3' end of the RNA under analysis is allowed to anneals to the RNA itself. Mung-bean nuclease is then used to digest single strands of both RNA and DNA. Electrophoretic fractionation of "protected" undigested, labeled DNA is than performed using a sequence reaction of a known DNA as length marker. This procedure was applied to the analysis of both a polyA RNA (Interleukin 10 mRNA) and non polyA RNAs (sea urchin 18S and 26S rRNAs). This method might be potentially relevant for the evaluation of the role of posttrascriptional control of IL-10 in the pat…
EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells.
2015
KRAS mutational status is considered a negative predictive marker of the response to anti-EGFR therapies in colorectal cancer (CRC) patients. However, conflicting data exist regarding the variable response to EGFR-targeted therapy. The effects of oncogenic KRAS on downstream targets were studied in cell lines with different KRAS mutations. Cells harboring a single KRASG13D allele showed the most tumorigenic profile, with constitutive activation of the downstream pathway, rendering them EGF-unresponsive. Conversely, KRASA146T cells showed a full EGF-response in terms of signal transduction pathways, cell proliferation, migration or adhesion. Moreover, the global acetylome of CRC cells was al…
Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model
2015
ABSTRACT Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apopto…
cis-regulatory variation modulates susceptibility to enteric infection in the Drosophila genetic reference panel
2020
Abstract Background Resistance to enteric pathogens is a complex trait at the crossroads of multiple biological processes. We have previously shown in the Drosophila Genetic Reference Panel (DGRP) that resistance to infection is highly heritable, but our understanding of how the effects of genetic variants affect different molecular mechanisms to determine gut immunocompetence is still limited. Results To address this, we perform a systems genetics analysis of the gut transcriptomes from 38 DGRP lines that were orally infected with Pseudomonas entomophila. We identify a large number of condition-specific, expression quantitative trait loci (local-eQTLs) with infection-specific ones located …
The cell nucleus. A study in Burgundy
2019
ABSTRACT Wilhelm Bernhard’s revolutionary microscopy techniques helped him put forward the hypothesis of specialized compartmentalization of the nucleus. He also described for the first time the nuclear bodies and peri-chromatin fibrils, and demonstrated that these granules contain an RNA component. The tradition of biennial workshops, named after this great scientist, continues, and this year it took place in the heart of Burgundy, in Dijon, France (May 20–24, 2019, organized by INSERM UMR1231, UBFC), where well-fed participants emphasized the importance of viewing the cell nucleus as a hub of specialized colloidal compartments that orchestrate replication, transcription and nuclear transp…
Role of RNA Motifs in RNA Interaction with Membrane Lipid Rafts: Implications for Therapeutic Applications of Exosomal RNAs
2021
RNA motifs may promote interactions with exosomes (EXO-motifs) and lipid rafts (RAFT-motifs) that are enriched in exosomal membranes. These interactions can promote selective RNA loading into exosomes. We quantified the affinity between RNA aptamers containing various EXO- and RAFT-motifs and membrane lipid rafts in a liposome model of exosomes by determining the dissociation constants. Analysis of the secondary structure of RNA molecules provided data about the possible location of EXO- and RAFT-motifs within the RNA structure. The affinity of RNAs containing RAFT-motifs (UUGU, UCCC, CUCC, CCCU) and some EXO-motifs (CCCU, UCCU) to rafted liposomes is higher in comparison to aptamers withou…
Binding of RNA Aptamers to Membrane Lipid Rafts: Implications for Exosomal miRNAs Transfer from Cancer to Immune Cells
2020
Intraluminal vesicles (ILVs) are released into the extracellular space as exosomes after the fusion of multivesicular bodies (MVBs) with the plasma membrane. miRNAs are delivered to the raft-like region of MVB by RNA-binding proteins (RBPs). RNA loading into exosomes can be either through direct interaction between RNA and the raft-like region of the MVB membrane, or through interaction between an RBP&ndash
Selection of Membrane RNA Aptamers to Amyloid Beta Peptide: Implications for Exosome-Based Antioxidant Strategies
2019
The distribution of amyloid beta peptide 42 (Aβ42) between model exosomal membranes and a buffer solution was measured. The model membranes contained liquid-ordered regions or phosphatidylserine. Results demonstrated that up to ca. 20% of amyloid peptide, generated in the plasma (or intracellular) membrane as a result of proteolytic cleavage of amyloid precursor proteins by β- and γ-secretases, can stay within the membrane milieu. The selection of RNA aptamers that bind to Aβ42 incorporated into phosphatidylserine-containing liposomal membranes was performed using the selection-amplification (SELEX) method. After eight selection cycles, the pool of RNA aptamers was isol…
Changes in gene expression during adaptation of Listeria monocytogenes to the soil environment
2011
project SEST 009; International audience; Listeria monocytogenes is a ubiquitous opportunistic pathogen responsible for listeriosis. In order to study the processes underlying its ability to adapt to the soil environment, whole-genome arrays were used to analyse transcriptome modifications 15 minutes, 30 minutes and 18 h after inoculation of L. monocytogenes EGD-e in soil extracts. Growth was observed within the first day of incubation and large numbers were still detected in soil extract and soil microcosms one year after the start of the experiment. Major transcriptional reprofiling was observed. Nutrient acquisition mechanisms (phosphoenolpyruvate-dependent phosphotransferase systems and…