Search results for "CORRELATE"
showing 10 items of 1259 documents
Modelling of Non-WSSUS Channels with Time-Variant Doppler and Delay Characteristics
2018
This paper deals with the modelling of non-wide-sense stationary uncorrelated scattering (non-WSSUS) channels in which the angles of arrival (AOAs), Doppler frequencies, and propagation delays vary with time. Starting from a geometrical model in which the mobile station (MS) travels along a predefined path with time-variant velocity, it is shown how the parameters of the non-WSSUS model can be computed analytically assuming that the scatterers are fixed. One of the key results of our analysis is that the time-variant Doppler frequencies and the time-variant propagation delays of WSSUS and non-WSSUS channels are connected by a fundamental relationship. Furthermore, the time-variant channel t…
Exceptional sign changes of the nonlocal spin Seebeck effect in antiferromagnetic hematite
2021
A.R. and M.K. acknowledge support from the Graduate School of Excellence Materials Science in Mainz (DFG/GSC 266). A.R. and M.K. also acknowledge support from both MaHoJeRo (DAAD Spintronics network, Projects No. 57334897 and No. 57524834) and SPIN+X (DFG SFB TRR 173, No. 268565370 Projects No. A01 and No. B02) and KAUST (Project No. OSR-2019-CRG8-4048.2). This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universitat Mainz (MPGC). A.R., R.L., M.E., U.N., and M.K. acknowledge support from the DFG Project No. 423441604. R.L. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement FAST…
Magnetic sensitivity distribution of Hall devices in antiferromagnetic switching experiments
2021
We analyze the complex impact of the local magnetic spin texture on the transverse Hall-type voltage in device structures utilized to measure magnetoresistance effects. We find a highly localized and asymmetric magnetic sensitivity in the eight-terminal geometries that are frequently used in current-induced switching experiments, for instance to probe antiferromagnetic materials. Using current-induced switching of antiferromagnetic NiO/Pt as an example, we estimate the change in the spin Hall magnetoresistance signal associated with switching events based on the domain switching patterns observed via direct imaging. This estimate correlates with the actual electrical data after subtraction …
Observation of long-range orbital transport and giant orbital torque
2022
AbstractModern spintronics relies on the generation of spin currents through spin-orbit coupling. The spin-current generation has been believed to be triggered by current-induced orbital dynamics, which governs the angular momentum transfer from the lattice to the electrons in solids. The fundamental role of the orbital response in the angular momentum dynamics suggests the importance of the orbital counterpart of spin currents: orbital currents. However, evidence for its existence has been elusive. Here, we demonstrate the generation of giant orbital currents and uncover fundamental features of the orbital response. We experimentally and theoretically show that orbital currents propagate o…
Quantum rescaling, domain metastability and hybrid domain-walls in two-dimensional CrI3 magnets
2020
Higher-order exchange interactions and quantum effects are widely known to play an important role in describing the properties of low-dimensional magnetic compounds. Here we identify the recently discovered two-dimensional (2D) van der Waals (vdW) CrI3 as a quantum non-Heisenberg material with properties far beyond an Ising magnet as initially assumed. We find that biquadratic exchange interactions are essential to quantitatively describe the magnetism of CrI3 but requiring quantum rescaling corrections to reproduce its thermal properties. The quantum nature of the heat bath represented by discrete electron-spin and phonon-spin scattering processes induced the formation of spin fluctuations…
Geometric, electronic, and magnetic structure of Co$_2$FeSi: Curie temperature and magnetic moment measurements and calculations
2005
In this work a simple concept was used for a systematic search for new materials with high spin polarization. It is based on two semi-empirical models. Firstly, the Slater-Pauling rule was used for estimation of the magnetic moment. This model is well supported by electronic structure calculations. The second model was found particularly for Co$_2$ based Heusler compounds when comparing their magnetic properties. It turned out that these compounds exhibit seemingly a linear dependence of the Curie temperature as function of the magnetic moment. Stimulated by these models, Co$_2$FeSi was revisited. The compound was investigated in detail concerning its geometrical and magnetic structure by m…
Lattice Instability and Competing Spin Structures in the Double Perovskite Insulator Sr2FeOsO6
2013
The semiconductor Sr2FeOsO6, depending on temperature, adopts two types of spin structures that differ in the spin sequence of ferrimagnetic iron - osmium layers along the tetragonal c-axis. Neutron powder diffraction experiments, 57Fe M\"ossbauer spectra, and density-functional theory calculations suggest that this behavior arises because a lattice instability resulting in alternating iron-osmium distances fine-tunes the balance of competing exchange interactions. Thus, Sr2FeOsO6 is an example for a double perovskite, in which the electronic phases are controlled by the interplay of spin, orbital, and lattice degrees of freedom.
Strain-induced Shape Anisotropy in Antiferromagnetic Structures
2022
We demonstrate how shape dependent strain can be used to control antiferromagnetic order in NiO Pt thin films. For rectangular elements patterned along the easy and hard magnetocrystalline anisotropy axes of our film, we observe different domain structures and we identify magnetoelastic interactions that are distinct for different domain configurations. We reproduce the experimental observations by modeling the magnetoelastic interactions, considering spontaneous strain induced by the domain configuration, as well as elastic strain due to the substrate and the shape of the patterns. This allows us to demonstrate and explain how the variation of the aspect ratio of rectangular elements can b…
Impact of electromagnetic fields and heat on spin transport signals in Y$_{3}$Fe$_{5}$O$_{12}$
2019
Exploring new strategies to perform magnon logic is a key requirement for the further development of magnon-based spintronics. In this work, we realize a three-terminal magnon transport device to study the possibility of manipulating magnonic spin information transfer in a magnetic insulator via localized magnetic fields and heat generation. The device comprises two parallel Pt wires as well as a Cu center wire that are deposited on the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$. While the Pt wires act as spin current injector and detector, the Cu wire is used to create local magnetostatic fields and additional heat, which impact both the magnetic configuration and the magnons within t…
Exploring the behavior of vanadium under high-pressure and high-temperature conditions
2019
We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray diffraction experiments up to 120 GPa and 4000 K, determining the phase boundary of the bcc-to-rhombohedral transition and melting temperatures at different pressures. Melting temperatures have also been established from the observation of temperature plateaus during laser heating, and the results from the density-functional theory calculations. Results obtained from our experiments and calculations are fully consistent and lead to an accurate determination of the melting curve of vanadium. These results are di…