Search results for "Cerebral"

showing 10 items of 1357 documents

Neurofibromatosis type 2 tumor suppressor protein is expressed in oligodendrocytes and regulates cell proliferation and process formation.

2017

The neurofibromatosis type 2 (NF2) tumor suppressor protein Merlin functions as a negative regulator of cell growth and actin dynamics in different cell types amongst which Schwann cells have been extensively studied. In contrast, the presence and the role of Merlin in oligodendrocytes, the myelin forming cells within the CNS, have not been elucidated. In this work, we demonstrate that Merlin immunoreactivity was broadly distributed in the white matter throughout the central nervous system. Following Merlin expression during development in the cerebellum, Merlin could be detected in the cerebellar white matter tract at early postnatal stages as shown by its co-localization with Olig2-positi…

0301 basic medicineCentral Nervous SystemCytoplasmlcsh:MedicineNervous SystemMyelinMiceCell MovementAnimal CellsCerebellumMedicine and Health SciencesNeurofibromatosis type 2lcsh:ScienceNeuronsStainingCerebral CortexNeurofibromin 2MultidisciplinarybiologyCell StainingBrainCell migrationCell biologyOligodendrogliamedicine.anatomical_structureGenetic DiseasesCell ProcessesAnatomyCellular TypesCellular Structures and OrganellesResearch ArticleCell typeNeurofibromatosis 2NeurogenesisNerve Tissue ProteinsTransfectionResearch and Analysis MethodsCell Line03 medical and health sciencesmedicineAnimalsImmunohistochemistry TechniquesCell ProliferationCell NucleusClinical GeneticsCell growthAutosomal Dominant Diseaseslcsh:RBiology and Life SciencesCell Biologymedicine.diseaseOligodendrocyteMyelin basic proteinMerlin (protein)Mice Inbred C57BLHistochemistry and Cytochemistry Techniques030104 developmental biologySpecimen Preparation and TreatmentAstrocytesNeurofibromatosis Type 2Cellular Neurosciencebiology.proteinImmunologic Techniqueslcsh:QSchwann CellsNeurosciencePLoS ONE
researchProduct

Alterations in Tau Protein Level and Phosphorylation State in the Brain of the Autistic-Like Rats Induced by Prenatal Exposure to Valproic Acid

2021

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficient social interaction and communication besides repetitive, stereotyped behaviours. A characteristic feature of ASD is altered dendritic spine density and morphology associated with synaptic plasticity disturbances. Since microtubules (MTs) regulate dendritic spine morphology and play an important role in spine development and plasticity the aim of the present study was to investigate the alterations in the content of neuronal α/β-tubulin and Tau protein level as well as phosphorylation state in the valproic acid (VPA)-induced rat model of autism. Our results indicated that maternal exposure to VPA indu…

0301 basic medicineDendritic spineHippocampuslcsh:Chemistry0302 clinical medicinePregnancyTubulinPhosphorylationlcsh:QH301-705.5SpectroscopyValproic AcidbiologyERK1/2Chemistryautism spectrum disorders (ASD)valproic acid (VPA)BrainGeneral MedicineImmunohistochemistryComputer Science Applicationsmedicine.anatomical_structureCerebral cortexMaternal ExposurePrenatal Exposure Delayed EffectsFemaleDisease Susceptibilitymedicine.drugSignal Transductionmedicine.medical_specialtyCDK5Tau proteintau ProteinsCatalysisArticleInorganic Chemistry03 medical and health sciencesInternal medicinemental disordersmedicineAnimalsPhysical and Theoretical ChemistryAutistic DisorderMolecular BiologyCyclin-dependent kinase 5GSK-3βValproic AcidOrganic Chemistryα/β-tubulinRatsEnzyme Activation030104 developmental biologyEndocrinologylcsh:Biology (General)lcsh:QD1-999MAP-TauChromatolysisSynaptic plasticitybiology.proteinAkt/mTOR signalling030217 neurology & neurosurgeryBiomarkersInternational Journal of Molecular Sciences
researchProduct

Neuronal LRP4 regulates synapse formation in the developing CNS

2017

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific kno…

0301 basic medicineDendritic spineRabiesSynaptogenesisHippocampusBiologyHippocampal formationHippocampusNeuromuscular junctionGene Knockout TechniquesMice03 medical and health sciences0302 clinical medicinemedicineAnimalsLrp4 ; Central Nervous System Development ; Synapse Formation ; Dendritogenesis ; Transsynaptic Tracing ; Agrin ; In Utero Electroporation ; Psd95 ; Bassoon ; MouseMolecular BiologyCells CulturedLDL-Receptor Related ProteinsCerebral CortexGene knockdownAgrinDendritesCortex (botany)Cell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureReceptors LDLnervous systemRabies virusSynapsesImmunology030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

Melanin-concentrating hormone axons, but not orexin or tyrosine hydroxylase axons, innervate the claustrum in the rat: An immunohistochemical study

2016

The claustrum is a small, elongated nucleus close to the external capsule and deep in the insular cortex. In rodents, this nucleus is characterized by a dense cluster of parvalbumin labeling. The claustrum is connected with the cerebral cortex. It does not project to the brainstem, but brainstem structures can influence this nucleus. To identify some specific projections from the lateral hypothalamus and midbrain, we analyzed the distribution of projections labeled with antibodies against tyrosine hydroxylase (TH), melanin-concentrating hormone (MCH), and hypocretin (Hcrt) in the region of the claustrum. The claustrum contains a significant projection by MCH axons, whereas it is devoid of T…

0301 basic medicineExternal capsuleLateral hypothalamusTyrosine hydroxylaseGeneral NeuroscienceBiologyClaustrumMidbrain03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemCerebral cortexmedicineBrainstemNucleusNeurosciencehormones hormone substitutes and hormone antagonists030217 neurology & neurosurgeryJournal of Comparative Neurology
researchProduct

Taurine as an Essential Neuromodulator during Perinatal Cortical Development

2017

A variety of experimental studies demonstrated that neurotransmitters are an important factor for the development of the central nervous system, affecting neurodevelopmental events like neurogenesis, neuronal migration, programmed cell death, and differentiation. While the role of the classical neurotransmitters glutamate and gamma-aminobutyric acid (GABA) on neuronal development is well established, the aminosulfonic acid taurine has also been considered as possible neuromodulator during early neuronal development. The purpose of the present review article is to summarize the properties of taurine as neuromodulator in detail, focusing on the direct involvement of taurine on various neurode…

0301 basic medicineGABA receptorsTaurineCentral nervous systemReviewBiologymigrationlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineCajal–Retzius cellsmedicinePremovement neuronal activityGlycine receptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryNeocortexGABAA receptorglycine receptorsNeurogenesisGlutamate receptorrodent030104 developmental biologymedicine.anatomical_structurechemistrynervous systemsubplatecerebral cortexNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Deciphering Alzheimer’s Disease Pathogenic Pathway: Role of Chronic Brain Hypoperfusion on p-Tau and mTOR

2021

This review examines new biomolecular findings that lend support to the hemodynamic role played by chronic brain hypoperfusion (CBH) in driving a pathway to Alzheimer’s disease (AD). CBH is a common clinical feature of AD and the current topic of intense investigation in AD models. CBH is also the basis for the vascular hypothesis of AD which we originally proposed in 1993. New biomolecular findings reveal the interplay of CBH in increasing tau phosphorylation (p-Tau) in the hippocampus and cortex of AD mice, damaging fast axonal transport, increasing signaling of mammalian target of rapamycin (mTOR), impairing learning-memory function, and promoting the formation of neurofibrillary tangles…

0301 basic medicineHippocampustau ProteinsDisease03 medical and health sciences0302 clinical medicineAlzheimer DiseasemedicineAnimalsHumansCognitive declinePI3K/AKT/mTOR pathwayCerebral hypoperfusionbusiness.industryTOR Serine-Threonine KinasesGeneral NeuroscienceNeurodegenerationBrainGeneral Medicinemedicine.diseaseCortex (botany)Psychiatry and Mental healthClinical Psychology030104 developmental biologyCerebrovascular CirculationAxoplasmic transportGeriatrics and GerontologybusinessNeuroscience030217 neurology & neurosurgeryJournal of Alzheimer's Disease
researchProduct

Molecular Biology of Atherosclerotic Ischemic Strokes

2020

Among the causes of global death and disability, ischemic stroke (also known as cerebral ischemia) plays a pivotal role, by determining the highest number of worldwide mortality, behind cardiomyopathies, affecting 30 million people. The etiopathogenetic burden of a cerebrovascular accident could be brain ischemia (~80%) or intracranial hemorrhage (~20%). The most common site when ischemia occurs is the one is perfused by middle cerebral arteries. Worse prognosis and disablement consequent to brain damage occur in elderly patients or affected by neurological impairment, hypertension, dyslipidemia, and diabetes. Since, in the coming years, estimates predict an exponential increase of people w…

0301 basic medicineInflammasomesCerebral arteriesmicrogliaDiseaseReviewneuroinflammationBrain ischemialcsh:Chemistry0302 clinical medicineatherosclerosiStrokelcsh:QH301-705.5SpectroscopymicroRNAGeneral MedicineMKEYDKK-3Computer Science ApplicationsmicroRNAsBlood-Brain BarrierCardiologymedicine.symptomDectin-1medicine.medical_specialtyIschemiaBrain damageCatalysisInorganic Chemistry03 medical and health sciencesInternal medicineDiabetes mellitusmedicineischemic strokeAnimalsHumansPhysical and Theoretical ChemistryMolecular Biologybusiness.industryOrganic ChemistryAFmedicine.diseaseImmunity InnateNLRP3 inflammasome030104 developmental biologylcsh:Biology (General)lcsh:QD1-999atherosclerosisbusinessBBB030217 neurology & neurosurgeryDyslipidemiaCD200-CD200R
researchProduct

Phenotypic characterization of MCP-1 expressing neurons in the rat cerebral cortex.

2020

Chemokines are small, secreted molecules that mediate inflammatory reactions. Neurons and astrocytes constitutively express chemokines implicated in the process of neuroinflammation associated with neurodegenerative diseases. The monocyte chemoattractant protein-1 (MCP-1) has been widely related to this process. However, the constitutive expression of this molecule by neurons has not been elucidated so far. In this study, we set out to characterize the neurochemical phenotype of MCP-1-expressing neurons in the rat neocortex to infer its role in basal conditions. We observed the presence of two populations of neurons expressing MCP-1: One population of cells with weak expression of MCP-1 cor…

0301 basic medicineInterneuronPopulationBiologyInhibitory postsynaptic potential03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineNeurochemicalInterneuronsmedicineAnimalseducationNeuroinflammationChemokine CCL2Cerebral CortexNeuronseducation.field_of_studyNeocortexPyramidal CellsChemotaxisCell biologyRats030104 developmental biologymedicine.anatomical_structurePhenotypenervous systemCerebral cortex030217 neurology & neurosurgeryJournal of chemical neuroanatomy
researchProduct

Characterization and Stage-Dependent Lineage Analysis of Intermediate Progenitors of Cortical GABAergic Interneurons

2021

Intermediate progenitors of both excitatory and inhibitory neurons, which can replenish neurons in the adult brain, were recently identified. However, the generation of intermediate progenitors of GABAergic inhibitory neurons (IPGNs) has not been studied in detail. Here, we characterized the spatiotemporal distribution of IPGNs in mouse cerebral cortex. IPGNs generated neurons during both embryonic and postnatal stages, but the embryonic IPGNs were more proliferative. Our lineage tracing analyses showed that the embryonically proliferating IPGNs tended to localize to the superficial layers rather than the deep cortical layers at 3 weeks after birth. We also found that embryonic IPGNs derive…

0301 basic medicineLineage (genetic)Ganglionic eminencelaminar distributionNeurosciences. Biological psychiatry. NeuropsychiatryBiologyInhibitory postsynaptic potential03 medical and health sciences0302 clinical medicinemedicinecortical developmentGABAergic neuron progenitorsProgenitor cellOriginal ResearchGeneral NeuroscienceEmbryonic stem cellCell biology030104 developmental biologymedicine.anatomical_structureCerebral cortexExcitatory postsynaptic potentialGABAergicfate analysis030217 neurology & neurosurgeryNeurosciencelineageRC321-571Frontiers in Neuroscience
researchProduct

Neurochemical Phenotype of Reelin Immunoreactive Cells in the Piriform Cortex Layer II

2016

Reelin, a glycoprotein expressed by Cajal-Retzius neurons throughout the marginal layer of developing neocortex, has been extensively shown to play an important role during brain development, guiding neuronal migration and detachment from radial glia. During the adult life, however, many studies have associated Reelin expression to enhanced neuronal plasticity. Although its mechanism of action in the adult brain remains mostly unknown, Reelin is expressed mainly by a subset of mature interneurons. Here, we confirm the described phenotype of this subpopulation in the adult neocortex. We show that these mature interneurons, although being in close proximity, lack polysialylated neural cell ad…

0301 basic medicineLow-density lipoprotein receptor-related protein 8PSA-NCAMlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencepiriform cortex0302 clinical medicineADULT-RATSYNAPTIC PLASTICITYCEREBRAL-CORTEXPiriform cortexmedicineMESSENGER-RNA EXPRESSIONPSA-NCAM EXPRESSIONReelinCajal-Retzius cellslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchNeocortexbiology3112 NeurosciencesNONHUMAN-PRIMATESReelinDAB1DoublecortinDOUBLECORTIN-EXPRESSING CELLS030104 developmental biologymedicine.anatomical_structureSTRUCTURAL PLASTICITYnervous systemDCXbiology.proteinNeural cell adhesion moleculeNeuNNeuroscienceHIPPOCAMPAL CONNECTIONS030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct