Search results for "Computational Mathematic"
showing 10 items of 987 documents
On the local and semilocal convergence of a parameterized multi-step Newton method
2020
Abstract This paper is devoted to a family of Newton-like methods with frozen derivatives used to approximate a locally unique solution of an equation. We perform a convergence study and an analysis of the efficiency. This analysis gives us the opportunity to select the most efficient method in the family without the necessity of their implementation. The method can be applied to many type of problems, including the discretization of ordinary differential equations, integral equations, integro-differential equations or partial differential equations. Moreover, multi-step iterative methods are computationally attractive.
Smoothed Particle ElectroMagnetics: A mesh-free solver for transients
2006
AbstractIn this paper an advanced mesh-free particle method for electromagnetic transient analysis, is presented. The aim is to obtain efficient simulations by avoiding the use of a mesh such as in the most popular grid-based numerical methods. The basic idea is to obtain numerical solutions for partial differential equations describing the electromagnetic problem by using a set of particles arbitrarily placed in the problem domain. The mesh-free smoothed particle hydrodynamics method has been adopted to obtain numerical solution of time domain Maxwell's curl equations. An explicit finite difference scheme has been employed for time integration. Details about the numerical treatment of elec…
SPECIAL SPLINES OF HYPERBOLIC TYPE FOR THE SOLUTIONS OF HEAT AND MASS TRANSFER 3-D PROBLEMS IN POROUS MULTI-LAYERED AXIAL SYMMETRY DOMAIN
2017
In this paper we study the problem of the diffusion of one substance through the pores of a porous multi layered material which may absorb and immobilize some of the diffusing substances with the evolution or absorption of heat. As an example we consider circular cross section wood-block with two layers in the radial direction. We consider the transfer of heat process. We derive the system of two partial differential equations (PDEs) - one expressing the rate of change of concentration of water vapour in the air spaces and the other - the rate of change of temperature in every layer. The approximation of corresponding initial boundary value problem of the system of PDEs is based on the cons…
Multiplicity results for Sturm-Liouville boundary value problems
2009
Multiplicity results for Sturm-Liouville boundary value problems are obtained. Proofs are based on variational methods.
Partial isometries and the conjecture of C.K. Fong and S.K. Tsui
2016
Abstract We investigate some bounded linear operators T on a Hilbert space which satisfy the condition | T | ≤ | Re T | . We describe the maximum invariant subspace for a contraction T on which T is a partial isometry to obtain that, in certain cases, the above condition ensures that T is self-adjoint. In other words we show that the Fong–Tsui conjecture holds for partial isometries, contractive quasi-isometries, or 2-quasi-isometries, and Brownian isometries of positive covariance, or even for a more general class of operators.
Numerical range and positive block matrices
2020
We obtain several norm and eigenvalue inequalities for positive matrices partitioned into four blocks. The results involve the numerical range $W(X)$ of the off-diagonal block $X$, especially the distance $d$ from $0$ to $W(X)$. A special consequence is an estimate, $$\begin{eqnarray}\text{diam}\,W\left(\left[\begin{array}{@{}cc@{}}A & X\\ X^{\ast } & B\end{array}\right]\right)-\text{diam}\,W\biggl(\frac{A+B}{2}\biggr)\geq 2d,\end{eqnarray}$$ between the diameters of the numerical ranges for the full matrix and its partial trace.
Fixed point results under generalized c-distance with application to nonlinear fourth-order differential equation
2019
We consider the notion of generalized c-distance in the setting of ordered cone b-metric spaces and obtain some new fixed point results. Our results provide a more general statement, under which can be unified some theorems of the existing literature. In particular, we refer to the results of Sintunavarat et al. [W. Sintunavarat, Y.J. Cho, P. Kumam, Common fixed point theorems for c-distance in ordered cone metric spaces, Comput. Math. Appl. 62 (2011) 1969-1978]. Some examples and an application to nonlinear fourth-order differential equation are given to support the theory.
Pattern formation driven by cross–diffusion in a 2D domain
2012
Abstract In this work we investigate the process of pattern formation in a two dimensional domain for a reaction–diffusion system with nonlinear diffusion terms and the competitive Lotka–Volterra kinetics. The linear stability analysis shows that cross-diffusion, through Turing bifurcation, is the key mechanism for the formation of spatial patterns. We show that the bifurcation can be regular, degenerate non-resonant and resonant. We use multiple scales expansions to derive the amplitude equations appropriate for each case and show that the system supports patterns like rolls, squares, mixed-mode patterns, supersquares, and hexagonal patterns.
Spectral study of {R,s+1,k}- and {R,s+1,k,∗}-potent matrices
2020
Abstract The { R , s + 1 , k } - and { R , s + 1 , k , ∗ } -potent matrices have been studied in several recent papers. We continue these investigations from a spectral point of view. Specifically, a spectral study of { R , s + 1 , k } -potent matrices is developed using characterizations involving an associated matrix pencil ( A , R ) . The corresponding spectral study for { R , s + 1 , k , ∗ } -potent matrices involves the pencil ( A ∗ , R ) . In order to present some properties, the relevance of the projector I − A A # where A # is the group inverse of A is highlighted. In addition, some applications and numerical examples are given, particularly involving Pauli matrices and the quaterni…
Quantitative prediction of effective material properties of heterogeneous media
1999
Effective electrical conductivity and electrical permittivity of water-saturated natural sandstones are evaluated on the basis of local porosity theory (LPT). In contrast to earlier methods, which characterize the underlying microstructure only through the volume fraction, LPT incorporates geometric information about the stochastic microstructure in terms of local porosity distribution and local percolation probabilities. We compare the prediction of LPT and of traditional effective medium theory with the exact results. The exact results for the conductivity and permittivity are obtained by solving the microscopic mixed boundary value problem for the Maxwell equations in the quasistatic app…