Search results for "Computer Science - Learning"

showing 10 items of 18 documents

A probabilistic estimation and prediction technique for dynamic continuous social science models: The evolution of the attitude of the Basque Country…

2015

In this paper, a computational technique to deal with uncertainty in dynamic continuous models in Social Sciences is presented.Considering data from surveys,the method consists of determining the probability distribution of the survey output and this allows to sample data and fit the model to the sampled data using a goodness-of-fit criterion based the χ2-test. Taking the fitted parameters that were not rejected by the χ2-test, substituting them into the model and computing their outputs, 95% confidence intervals in each time instant capturing the uncertainty of the survey data (probabilistic estimation) is built. Using the same set of obtained model parameters, a prediction over …

FOS: Computer and information sciencesAttitude dynamicsProbabilistic predictionComputer sciencePopulationDivergence-from-randomness modelSample (statistics)computer.software_genreMachine Learning (cs.LG)Probabilistic estimationSocial scienceeducationProbabilistic relevance modeleducation.field_of_studyApplied MathematicsProbabilistic logicConfidence intervalComputer Science - LearningComputational MathematicsSocial dynamic modelsProbability distributionSurvey data collectionData miningMATEMATICA APLICADAcomputerApplied Mathematics and Computation
researchProduct

Optimized Kernel Entropy Components

2016

This work addresses two main issues of the standard Kernel Entropy Component Analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of by variance as in Kernel Principal Components Analysis. In this work, we propose an extension of the KECA method, named Optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular…

FOS: Computer and information sciencesComputer Networks and CommunicationsKernel density estimationMachine Learning (stat.ML)02 engineering and technologyKernel principal component analysisMachine Learning (cs.LG)Artificial IntelligencePolynomial kernelStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringMathematicsbusiness.industry020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsComputer Science - LearningKernel methodKernel embedding of distributionsVariable kernel density estimationRadial basis function kernelKernel smoother020201 artificial intelligence & image processingArtificial intelligencebusinessSoftwareIEEE Transactions on Neural Networks and Learning Systems
researchProduct

Probabilistic and team PFIN-type learning: General properties

2008

We consider the probability hierarchy for Popperian FINite learning and study the general properties of this hierarchy. We prove that the probability hierarchy is decidable, i.e. there exists an algorithm that receives p_1 and p_2 and answers whether PFIN-type learning with the probability of success p_1 is equivalent to PFIN-type learning with the probability of success p_2. To prove our result, we analyze the topological structure of the probability hierarchy. We prove that it is well-ordered in descending ordering and order-equivalent to ordinal epsilon_0. This shows that the structure of the hierarchy is very complicated. Using similar methods, we also prove that, for PFIN-type learning…

FOS: Computer and information sciencesComputer Science::Machine LearningTheoretical computer scienceComputer Networks and CommunicationsExistential quantificationStructure (category theory)DecidabilityType (model theory)Learning in the limitTheoretical Computer ScienceMachine Learning (cs.LG)Probability of successFinite limitsMathematicsOrdinalsDiscrete mathematicsHierarchybusiness.industryApplied MathematicsAlgorithmic learning theoryProbabilistic logicF.1.1 I.2.6Inductive inferenceInductive reasoningDecidabilityComputer Science - LearningTeam learningComputational Theory and MathematicsArtificial intelligencebusinessJournal of Computer and System Sciences
researchProduct

Simplifying Probabilistic Expressions in Causal Inference

2018

Obtaining a non-parametric expression for an interventional distribution is one of the most fundamental tasks in causal inference. Such an expression can be obtained for an identifiable causal effect by an algorithm or by manual application of do-calculus. Often we are left with a complicated expression which can lead to biased or inefficient estimates when missing data or measurement errors are involved. We present an automatic simplification algorithm that seeks to eliminate symbolically unnecessary variables from these expressions by taking advantage of the structure of the underlying graphical model. Our method is applicable to all causal effect formulas and is readily available in the …

FOS: Computer and information sciencesComputer Science - Artificial Intelligencegraph theoryyksinkertaisuussimplificationgraphical modelMachine Learning (stat.ML)Machine Learning (cs.LG)Computer Science - Learningprobabilistic expressionArtificial Intelligence (cs.AI)Statistics - Machine Learningkausaliteettipiirrosmerkitcausal inferencegraafit
researchProduct

Ensembles of Randomized Time Series Shapelets Provide Improved Accuracy while Reducing Computational Costs

2017

Shapelets are discriminative time series subsequences that allow generation of interpretable classification models, which provide faster and generally better classification than the nearest neighbor approach. However, the shapelet discovery process requires the evaluation of all possible subsequences of all time series in the training set, making it extremely computation intensive. Consequently, shapelet discovery for large time series datasets quickly becomes intractable. A number of improvements have been proposed to reduce the training time. These techniques use approximation or discretization and often lead to reduced classification accuracy compared to the exact method. We are proposin…

FOS: Computer and information sciencesComputer Science - LearningComputingMethodologies_PATTERNRECOGNITIONMachine Learning (cs.LG)
researchProduct

Remote Sensing Image Classification with Large Scale Gaussian Processes

2017

Current remote sensing image classification problems have to deal with an unprecedented amount of heterogeneous and complex data sources. Upcoming missions will soon provide large data streams that will make land cover/use classification difficult. Machine learning classifiers can help at this, and many methods are currently available. A popular kernel classifier is the Gaussian process classifier (GPC), since it approaches the classification problem with a solid probabilistic treatment, thus yielding confidence intervals for the predictions as well as very competitive results to state-of-the-art neural networks and support vector machines. However, its computational cost is prohibitive for…

FOS: Computer and information sciences010504 meteorology & atmospheric sciencesComputer scienceMultispectral image0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technologyLand cover01 natural sciencesStatistics - ApplicationsMachine Learning (cs.LG)Kernel (linear algebra)Bayes' theoremsymbols.namesakeStatistics - Machine LearningApplications (stat.AP)Electrical and Electronic EngineeringGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingContextual image classificationArtificial neural networkData stream miningProbabilistic logicSupport vector machineComputer Science - LearningKernel (image processing)symbolsGeneral Earth and Planetary Sciences
researchProduct

Enhancing identification of causal effects by pruning

2018

Causal models communicate our assumptions about causes and effects in real-world phe- nomena. Often the interest lies in the identification of the effect of an action which means deriving an expression from the observed probability distribution for the interventional distribution resulting from the action. In many cases an identifiability algorithm may return a complicated expression that contains variables that are in fact unnecessary. In practice this can lead to additional computational burden and increased bias or inefficiency of estimates when dealing with measurement error or missing data. We present graphical criteria to detect variables which are redundant in identifying causal effe…

päättelyFOS: Computer and information sciencesalgorithmcausal modelMachine Learning (stat.ML)Machine Learning (cs.LG)Computer Science - Learningleikkaus (kasvit)koneoppiminenStatistics - Machine Learningidentiafiabilityalgoritmitkausaliteetticausal inferencetunnistaminen
researchProduct

Anomaly Detection Framework Using Rule Extraction for Efficient Intrusion Detection

2014

Huge datasets in cyber security, such as network traffic logs, can be analyzed using machine learning and data mining methods. However, the amount of collected data is increasing, which makes analysis more difficult. Many machine learning methods have not been designed for big datasets, and consequently are slow and difficult to understand. We address the issue of efficient network traffic classification by creating an intrusion detection framework that applies dimensionality reduction and conjunctive rule extraction. The system can perform unsupervised anomaly detection and use this information to create conjunctive rules that classify huge amounts of traffic in real time. We test the impl…

FOS: Computer and information sciencesComputer Science - LearningComputer Science - Cryptography and SecurityCryptography and Security (cs.CR)Machine Learning (cs.LG)
researchProduct

An LP-based hyperparameter optimization model for language modeling

2018

In order to find hyperparameters for a machine learning model, algorithms such as grid search or random search are used over the space of possible values of the models hyperparameters. These search algorithms opt the solution that minimizes a specific cost function. In language models, perplexity is one of the most popular cost functions. In this study, we propose a fractional nonlinear programming model that finds the optimal perplexity value. The special structure of the model allows us to approximate it by a linear programming model that can be solved using the well-known simplex algorithm. To the best of our knowledge, this is the first attempt to use optimization techniques to find per…

FOS: Computer and information sciencesMathematical optimizationPerplexityLinear programmingComputer scienceMachine Learning (stat.ML)02 engineering and technology010501 environmental sciences01 natural sciencesTheoretical Computer ScienceNonlinear programmingMachine Learning (cs.LG)Random searchSimplex algorithmSearch algorithmStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringFOS: MathematicsMathematics - Optimization and Control0105 earth and related environmental sciencesHyperparameterComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Computer Science - LearningHardware and ArchitectureOptimization and Control (math.OC)Hyperparameter optimization020201 artificial intelligence & image processingLanguage modelSoftwareInformation Systems
researchProduct

Bayesian Unification of Gradient and Bandit-based Learning for Accelerated Global Optimisation

2017

Bandit based optimisation has a remarkable advantage over gradient based approaches due to their global perspective, which eliminates the danger of getting stuck at local optima. However, for continuous optimisation problems or problems with a large number of actions, bandit based approaches can be hindered by slow learning. Gradient based approaches, on the other hand, navigate quickly in high-dimensional continuous spaces through local optimisation, following the gradient in fine grained steps. Yet, apart from being susceptible to local optima, these schemes are less suited for online learning due to their reliance on extensive trial-and-error before the optimum can be identified. In this…

FOS: Computer and information sciencesMathematical optimizationComputer scienceComputer Science - Artificial IntelligenceBayesian probability02 engineering and technologyMachine learningcomputer.software_genreMachine Learning (cs.LG)symbols.namesakeLocal optimumMargin (machine learning)0202 electrical engineering electronic engineering information engineeringGaussian processFlexibility (engineering)business.industry020206 networking & telecommunicationsFunction (mathematics)Computer Science - LearningArtificial Intelligence (cs.AI)symbols020201 artificial intelligence & image processingAlgorithm designLinear approximationArtificial intelligencebusinesscomputer
researchProduct