Search results for "Conductor"

showing 10 items of 1270 documents

Colloquium: Nonequilibrium effects in superconductors with a spin-splitting field

2018

This Colloquium discusses the recent progress in understanding the properties of spin-split superconductors under nonequilibrium conditions. Recent experiments and theories demonstrate a rich variety of transport phenomena occurring in devices based on such materials that suggest direct applications in thermoelectricity, low-dissipative spintronics, radiation detection, and sensing. This text discusses different experimental situations and presents a theoretical framework based on quantum kinetic equations. This framework provides an accurate description of the nonequilibrium distribution of charge, spin, and energy, which are the relevant nonequilibrium modes, in different hybrid structure…

---General Physics and AstronomyLibrary scienceFOS: Physical sciences02 engineering and technologysuperconductors01 natural sciences7. Clean energysuprajohteetSuperconductivity (cond-mat.supr-con)Spin splitting0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)media_common.cataloged_instanceEuropean union010306 general physicskvanttifysiikkamedia_commonPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityEuropean research021001 nanoscience & nanotechnologyquantum physicsCondensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

Superconductivity near a magnetic domain wall

2018

We study the equilibrium properties of a ferromagnetic insulator/superconductor structure near a magnetic domain wall. We show how the domain wall size is affected by the superconductivity in such structures. Moreover, we calculate several physical quantities altered due to the magnetic domain wall, such as the spin current density and local density of states, as well as the resulting tunneling conductance into a structure with a magnetic domain wall.

---Materials sciencesuprajohtavuusMagnetic domainFOS: Physical sciencesInsulator (electricity)02 engineering and technologymagnetic fieldsSpin currentmagneettikentätsuperconductors01 natural sciencessuprajohteetSuperconductivity (cond-mat.supr-con)Physics::Fluid DynamicsCondensed Matter::Superconductivity0103 physical sciences010306 general physicsPhysical quantitySuperconductivityTunneling conductanceLocal density of statesta114Condensed matter physicsCondensed Matter - Superconductivitysuperconductivity021001 nanoscience & nanotechnologyFerromagnetism0210 nano-technologyPhysical Review B
researchProduct

The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires

2015

We experimentally investigate the influence of AlN buffer growth on the nucleation and the polarity of a self-organized assembly of GaN nanowires (NWs) grown on Si. Two complementary growth mechanisms for AlN buffer deposited on Si are demonstrated. Both emphasize the aggregation of Si on the AlN surface and the growth of large cubic crystallites, namely, AlN pedestals. Further growths of GaN NWs assembly reveal that the GaN 2D layer found at the bottom of the NW assembly is the result of the coalescence of Ga-polar pyramids, whereas AlN pedestals are observed as preferential but not exclusive NW nucleation sites. NWs are N-polar or exhibit inversion domains with a Ga-polar core/N-polar she…

010302 applied physicsCoalescence (physics)[PHYS]Physics [physics]Materials sciencebusiness.industryNucleationWide-bandgap semiconductorNanowireGeneral Physics and AstronomyNanotechnology02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesBuffer (optical fiber)Nanolithography0103 physical sciencesOptoelectronicsCrystalliteSelf-assembly0210 nano-technologybusinessComputingMilieux_MISCELLANEOUS
researchProduct

Phase segregation in Mg$_{x}$Zn$_{1-x}$O probed by optical absorption and photoluminescence at high pressure

2017

The appearance of segregated wurtzite Mg$_x$Zn$_{1-x}$O with low Mg content in thin films with $x>0.3$ affected by phase separation, cannot be reliably probed with crystallographic techniques owing to its embedded nanocrystalline configuration. Here we show a high-pressure approach which exploits the distinctive behaviors under pressure of wurtzite Mg$_x$Zn$_{1-x}$O thin films with different Mg contents to unveil phase segregation for $x>0.3$. By using ambient conditions photoluminescence (PL), and with optical absorption and PL under high pressure for $x=0.3$ we show that the appearance of a segregated wurtzite phase with a magnesium content of x $\sim$ 0.1 is inherent to the wurtzit…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencePhotoluminescenceBand gapAnalytical chemistryWide-bandgap semiconductorGeneral Physics and AstronomyMineralogyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNanocrystalline materialPhase (matter)0103 physical sciencesAbsorption (chemistry)Thin film0210 nano-technologyWurtzite crystal structure
researchProduct

Photo-electrical and transport properties of hydrothermal ZnO

2016

We performed the studies of optical, photoelectric, and transport properties of a hydrothermal bulk n-type ZnO crystal by using the contactless optical techniques: photoluminescence, light-induced transient grating, and differential reflectivity. Optical studies revealed bound exciton and defect-related transitions between the donor states (at ∼60 meV and ∼240 meV below the conduction band) and the deep acceptor states (at 0.52 eV above the valence band). The acceptor state was ascribed to VZn, and its thermal activation energy of 0.43 eV was determined. A low value of carrier diffusion coefficient (∼0.1 cm2/s) at low excitations and temperatures up to 800 K was attributed to impact the rec…

010302 applied physicsElectron mobilityPhotoluminescenceChemistryBand gapExcitonWide-bandgap semiconductorGeneral Physics and Astronomy02 engineering and technologyCarrier lifetime021001 nanoscience & nanotechnology01 natural sciencesAcceptorMolecular physicsCrystalCondensed Matter::Materials Science0103 physical sciencesAtomic physics0210 nano-technologyJournal of Applied Physics
researchProduct

Partial discharges at different voltage waveshapes: Comparison between two different acquisition systems

2018

In modern HV apparatuses the wide use of electronic converters, increase the stress on the involved insulation systems and thus affect the reliability of the whole power grid. Additionally, such non-sinusoidal voltage shapes contain high gradient flanks that create problems in the detection of partial discharge (PD) activity. The aim of this paper is to discuss the methodology on how to suitably approach PD detection in insulation systems exposed to various voltage waveshapes in general by comparing two different measuring systems. The first one, equipped with a resonant PD decoupler, designed specifically for detection at typical power electronic waveshapes and the other one, based on an a…

010302 applied physicsFrequency responseMaterials sciencebusiness.industrySystem of measurement020208 electrical & electronic engineeringElectrical engineering02 engineering and technologyConverters01 natural sciencesPower (physics)Settore ING-IND/31 - ElettrotecnicaReliability (semiconductor)Partial discharge0103 physical sciencesPartial discharge0202 electrical engineering electronic engineering information engineeringmeasurementElectronicsElectrical and Electronic Engineeringbusinesssquare voltage waveformsVoltageIEEE Transactions on Dielectrics and Electrical Insulation
researchProduct

SIC based solid state protections switches for space applications

2017

Development and technology maturation of Silicon Carbide (SiC) power transistors over the last 15 years has motivated its study in aerospace systems. When compared with Si devices, superior voltage blocking capacity and the capability of operation at higher temperatures, give important advantages in space power electronics applications, similar to what happens in terrestrial electronics. This paper discusses the use of SiC power transistors for Solid State Power Switches especially addressed to the space segment. Two applications will be covered, the first is the Solid State Shunt Switch, widely used in high power Direct Energy Transfer (DET) photovoltaic power regulators and the second is …

010302 applied physicsMaterials science010308 nuclear & particles physicsbusiness.industryPhotovoltaic systemTransistorElectrical engineeringHigh voltage01 natural scienceslaw.inventionchemistry.chemical_compoundchemistrylawPower electronics0103 physical sciencesSilicon carbidePower semiconductor deviceElectronicsbusinessVoltage2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe)
researchProduct

High-pressure study of the infrared active modes in wurtzite and rocksalt ZnO

2011

International audience; We present a high-pressure study of ZnO carried out in the mid- to far-infrared frequency domain with the aim of characterizing the optic modes of wurtzite and rocksalt ZnO. We obtained the pressure coefficients of the E1(TO), E1(LO), A1(TO), and A1(LO) modes of the low-pressure wurtzite phase and compare them with previous Raman measurements. The optical modes of the high-pressure rocksalt phase are infrared active, so we were able to determine their wave numbers and pressure dependencies. In the wurtzite phase, high pressure induces a slight decrease in both longitudinal and transverse effective charges. The decrease is more pronounced in the rocksalt phase.

010302 applied physicsMaterials scienceCondensed matter physicsInfraredbusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsTransverse planesymbols.namesakeSemiconductorOpticsFrequency domainPhase (matter)[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencessymbolsPACS : 78.30.Fs 64.70.kgWavenumber0210 nano-technologyRaman spectroscopybusinessWurtzite crystal structure
researchProduct

Half-Heusler compounds: novel materials for energy and spintronic applications

2012

Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as future energy applications and for spintronics. The semiconducting Heusler compounds can be identified by the number of valence electrons. The band gap can be tuned between 0 and 4 eV by the electronegativity difference of the constituents. Magnetism can be introduced in these compounds by using rare-earth elements, manganese or ‘electron’ doping. Thus, there is a great interest in the fields of thermoelectrics, solar cells and diluted magnetic semiconductors. The combination of different properties such as superconductivity and topological edge states leads to new multifunct…

010302 applied physicsMaterials scienceSpintronicsCondensed Matter::OtherBand gapMagnetismNanotechnology02 engineering and technologyNarrow-gap semiconductorMagnetic semiconductor021001 nanoscience & nanotechnologyCondensed Matter PhysicsThermoelectric materials01 natural sciences7. Clean energyElectronic Optical and Magnetic MaterialsElectronegativityCondensed Matter::Materials Science0103 physical sciencesMaterials ChemistryCondensed Matter::Strongly Correlated ElectronsElectrical and Electronic Engineering0210 nano-technologyValence electronSemiconductor Science and Technology
researchProduct

SiC Power Switches Evaluation for Space Applications Requirements

2016

We have evaluated several SiC power switches available on the market, by defining and performing a global test campaign oriented to Space applications requirements, in order to define their main benefits but also the limits of current SiC technology. This allowed to identify a number of target applications where SiC could be used as a technology push for a new generation of space electronics units. Silicon devices qualified for space systems above 600V for the switches and 1200V for the rectifiers are not available due to performances limitations of Si. Among the typical static and dynamic characterization, we have performed temperature and power stress and HTRB tests. More remarkably, we h…

010302 applied physicsMaterials scienceTechnology pushbusiness.industryMechanical EngineeringElectrical engineeringJFET02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesPower (physics)Stress (mechanics)Reliability (semiconductor)Mechanics of Materials0103 physical sciencesMOSFETElectronic engineeringGeneral Materials SciencePower MOSFET0210 nano-technologybusinessRadiation hardeningMaterials Science Forum
researchProduct