Search results for "Conductor"
showing 10 items of 1270 documents
The Effectiveness of Laser-Assisted Surgical Excision of Leukoplakias and Hyperkeratosis of Oral Mucosa: A Case Series in A Group of Patients
2019
Introduction: In the different branches of dentistry, the use of laser to solve different clinical situations is increasing due to numerous advantages that have been studied in literature since the 70s. Leucoplakia and hyperkeratosis can benefit from laser-assisted treatment. In most cases biopsy sampling, histological examination and, if no malignant cells are present, the follow-up is needed. However, even if the lesion is free of dysplasia patients often ask to eliminate these white spots that are always a cause of concern. Aim: From these numerous requests comes the idea of setting up a laser-assisted protocol as less invasive as possible to be offered to patients. The aim of the study …
From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials
2010
Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous 'marks' in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge(2)Sb(2)Te(5) (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag(3.5)In(3.8)Sb(75.0)Te(17.7) (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GS…
The Effect of Electronic Properties of Anodized and Hard Anodized Ti and Ti6Al4V on Their Reactivity in Simulated Body Fluid
2022
The electronic properties of barrier and porous layers on Ti and Ti6Al4V were studied. Barrier anodic oxides grown to 40 V on Ti and on Ti6Al4V are both n-type semiconductors with a band gap of 3.3 eV and 3.4 eV respectively, in agreement with the formation of amorphous TiO2. Anodizing to 200 V at 20 mA cm−2 in calcium acetate and β-glycerol phosphate disodium pentahydrate leads to the formation of Ca and P containing porous films with a photoelectrochemical behaviour dependent on the metallic substrate. A band gap of 3.2 eV and the flat band potential of −0.5 V vs Ag/AgCl were measured for the porous oxide on Ti, while optical transitions at 2.15 eV and a significantly more positive flat b…
Finite-size scaling of charge carrier mobility in disordered organic semiconductors
2016
Simulations of charge transport in amorphous semiconductors are often performed in microscopically sized systems. As a result, charge carrier mobilities become system-size dependent. We propose a simple method for extrapolating a macroscopic, nondispersive mobility from the system-size dependence of a microscopic one. The method is validated against a temperature-based extrapolation [A. Lukyanov and D. Andrienko, Phys. Rev. B 82, 193202 (2010)]. In addition, we provide an analytic estimate of system sizes required to perform nondispersive charge transport simulations in systems with finite charge carrier density, derived from a truncated Gaussian distribution. This estimate is not limited t…
Characterization of Thin Passive Film-Electrolyte Junctions. The Amorphous Semiconductor (a-SC) Schottky Barrier Approach.
2017
A detailed study of the electronic properties of thin (< 20 nm) anodic TiO2 potentiostatically grown on titanium in two different solutions is presented. The results show that the nature of the anodizing solution affects the electronic properties of the anodic film and in particular the density of electronic state (DOS) distribution. Different DOS were derived from the experimental data analyzed according to the theory of amorphous semiconductor (a-SC) Schottky barrier. It is shown that the usual non-linear and frequency dependent Mott-Schottky plots are in agreement with expected theoretical behaviour of a-SC Schottky barrier. It is shown the importance of the DOS distribution in determini…
<title>Holographic properties of dielectric crystals and amorphous semiconductor films</title>
2001
Holographic recording properties and mechanisms are analyzed and compared in dielectric electrooptic crystals (EOC), dielectric colored alkali halide crystals (AHC) and amorphous semiconductor films (ASF) basing on author's investigations as well as on the literature data. Holographic photosensitivity parameters are introduced enabling the characterization of the recording mechanism efficiency independently of the particular optical and geometrical sample parameters, and allowing also for recording optimization. Ultimate specific recording energies for EOC, AHC and ASF are theoretically estimated. It is concluded that the ultimate recording energy for both crystalline and amorphous material…
Correlated barrier hopping in NiO films
1991
The ac conduction in NiO films has been investigated in the frequency range 10 Hz < v < 10^9 Hz and at temperatures between 10 and 300 K. The frequency and the temperature dependence of the electrical conductivity can be consistently explained within a model developed for the mechanism of charge transfer in amorphous semiconductors which proposes that charge carriers hop over potential barriers between defect sites, the height of the barriers being correlated with the intersite separation.
High-efficiency silicon-compatible photodetectors based on Ge quantum dots
2011
We report on high responsivity, broadband metal/insulator/semiconductor photodetectors with amorphous Ge quantum dots (a-Ge QDs) as the active absorbers embedded in a silicon dioxide matrix. Spectral responsivities between 1-4 A/W are achieved in the 500-900 nm wavelength range with internal quantum efficiencies (IQEs) as high as ∼700%. We investigate the role of a-Ge QDs in the photocurrent generation and explain the high IQE as a result of transport mechanisms via photoexcited QDs. These results suggest that a-Ge QDs are promising for high-performance integrated optoelectronic devices that are fully compatible with silicon technology in terms of fabrication and thermal budget. © 2011 Amer…
Two-Dimensional Indium Selenide for Sulphur Vapour Sensing Applications
2020
Surface-to-volume ratio in two-dimensional (2D) materials highlights among their characteristics as an inherent and intrinsic advantage taking into account their strong sensitivity to surface effects. For this reason, we have proposed in this work micromechanically exfoliated 2D nanosheets of InSe as an optical vapour sensor. As a proof of concept, we used 2-mercaptoethanol as the chemical analyte in vapour phase to monitor the change of the InSe photoluminescence (PL) before and after exposure to the analyte. For short vapour exposure times (at low analyte concentration), we found a PL enhancement of InSe nanosheets attributed to the surface localization of Se defects. For long vapour expo…
New n-type molecular semiconductor–doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (Lu…
2018
International audience; Molecular semiconductor–doped insulator (MSDI) heterojunctions were designed using a new family of sublayers, namely triphenodioxazines (TPDO). The device obtained by combining the tetracyano triphenodioxazine bearing two triisopropylsilylethynyl moieties as a sublayer with the lutetium bisphthalocyanine (LuPc2) as a top layer showed a nonlinear current–voltage characteristic independent of the sign of the polarization, which is the signature of MSDI heterojunctions. Thus, a TPDO was used in a chemical sensor for the first time. Despite LuPc2 being the only material exposed to the atmosphere, the positive response of the device under ammonia revealed the key role pla…