Search results for "Control Engineering"
showing 10 items of 435 documents
An Analysis Method of the Electro-Hydraulic Rotational Module
2012
The paper presents a dynamic research of a rotational module of structure to industrial robot MA 221, to establish the functional characteristics that recommend it for use in the structure of the robot. Actual research performed by two methods: BODE and STEP response of the established the construction parameters values of electro-hydraulic servo-system for stable operation.
Researches Regarding the Use of Elctrohydraulic Servosystems at Industrial Robots
2012
This paper presents some researches regarding the use of electro-hydraulic servo-systems in driving the industrial robots, taking into consideration the conditions in which the robots work. The researches conducted upon a particular system, reveal the optimum design elements for obtaining a good behaviour in use, subsequently a good stability in use.
Synergic algorithms for the planning and the intelligent following of a trajectory for non-holonomic vehicles
2008
Although there are many studies about two wheels non-holonomic vehicles, in order to simplify the problem the planning and the following of trajectories or paths are generally considered two different phases. In this paper, two algorithms for the synergic working of trajectory planning with intelligent trajectory following are presented. The "trajectory shape" characteristics obtained in the planning phase are used for the efficient trajectory following. From the shape, in order to follow the trajectory, an intelligent controller calculates, without further elaboration, the reference wheels velocity of the vehicle. The knowledge of trajectory shape characteristics and curvature constraints …
Optimal power flow based on glow worm-swarm optimization for three-phase islanded microgrids
2014
This paper presents an application of the Glowworm Swarm Optimization method (GSO) to solve the optimal power flow problem in three-phase islanded microgrids equipped with power electronics dc-ac inverter interfaced distributed generation units. In this system, the power injected by the distributed generation units and the droop control parameters are considered as variables to be adjusted by a superior level control. Two case studies with different optimized parameters have been carried out on a 6-bus test system. The obtained results showed the effectiveness of the proposed approach and overcomes the problem of OPF in islanded microgrids showing loads unbalance.
Measurement-based load modelling for power supply system design
2008
Load modelling is essential to simulate system features as closely as possible to the effective behaviour. In spite of model complexity, the need for accuracy often leads to a component-based approach, i.e. the analysis of load internal subsystems. It is a common belief that measurement-based load models lead to low accuracy. This paper presents a new, high-accuracy measurement-based load modelling approach to define a power consumption profile load model for power systems design. The load modeling technique is described by an application. Simulation and experimental results are compared. The efficiency and portability of the proposed modelling approach is discussed. ©2008 IEEE.
Control design for a hypersonic aircraft using a switched linear parameter-varying system approach
2012
This paper is concerned with the control problem of an air-breathing hypersonic aircraft using a switched linear-parameter-varying systems approach. The rigid non-linear longitudinal model of a generic hypersonic aircraft is adopted with the aim of verifying the design methodology of the developed controller and switching logic. By linearizing the non-linear model of the hypersonic aircraft at trim points and dividing the velocity range into several parts, a switched linear parameter-varying model for the underlying system is derived. With the aid of multiple Lyapunov-like functions technique, controllers that ensure the tracking of given commands of the closed-loop system are designed und…
Modeling and Simulation of a Cylinder Hoisting System for Real-Time Hardware-in-the-Loop Testing
2016
Summary Modeling-and-simulation software that is used in the design and development of drilling equipment provides testing and redesigning of offshore machines early in the product-development process. Typically, models of offshore equipment are complex and suitable only for offline simulations that allow testing of just predefined functions of the system without the possibility of controlling it with the operator's inputs in real time (RT). This is related to the fact that, usually, complex models put high demands on the computational power of the simulator hardware and, thus, limit its RT performance. On the basis of the authors' observations, it is concluded that RT performance can be di…
Design optimization on the drive train of a light-weight robotic arm
2011
A drive train optimization method for design of light-weight robots is proposed. Optimal selections of motors and gearboxes from a limited catalog of commercially available components are done simultaneously for all joints of a robotic arm. Characteristics of the motor and gearbox, including gear ratio, gear inertia, motor inertia, and gear efficiency, are considered in the drive train modeling. A co-simulation method is developed for dynamic simulation of the arm. A design example is included to demonstrate the proposed design optimization method.
Simulation approach for improving CNC milling machines accuracy for single axis motion
2010
CNC milling machines are widely used in manufacturing processes. In time, their accuracy is decreasing, which directly influences the accuracy of the manufactured parts. This research proposes a simulation-based method for improving the accuracy of the above mentioned machines, which is suitable to be applied at the shop floor level. A model of the feed drive, using a dc servomotor as actuator, is the core of the proposed approach. Matlab & Simulink based simulation diagrams were built in order to test the behavior of the system.
Local path planning in a complex environment for self-driving car
2014
This paper introduces an local path planning algorithm for the self-driving car in a complex environment. The proposed algorithm is composed of three parts: the novel path representation, the collision detection and the path modification using a voronoi cell. The novel path representation provides convenience for checking the collision and modifying the path and continuous control input for steering wheel rather than way point navigation. The proposed algorithm were applied to the self-driving car, EureCar(KAIST) and its applicability and feasibility of real time use were validated.