Search results for "DEMO Reactor"
showing 10 items of 15 documents
On the thermo-mechanical behaviour of DEMO water-cooled lithium lead equatorial outboard blanket module
2017
Abstract Within the framework of EUROfusion R&D activities an intense research campaign has been carried out at the University of Palermo, in close cooperation with ENEA Brasimone, in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead breeding blanket (WCLL). In particular, attention has been paid to the most recent geometric configuration of the DEMO WCLL outboard equatorial module, as designed by WCLL project team during 2015, endowed with an attachment system based on the use of radial pins, purposely outlined to connect the module back-plate to its back-supporting structure, that have been properly considered to simulate more realistically the …
Study of a water-cooled convective divertor prototype for the DEMO fusion reactor
2000
The plasma facing components of a fusion power reactor have a large impact on the overall plant design, its performance and availability and on the cost of electricity. The present work concerns a study of feasibility for a water-cooled prototype of the convective divertor component of the DEMO fusion reactor. The study has been carried out in two steps. In the first one thermal-hydraulic and neutronic parametric analyses have been performed to find out the prototype optimized configuration. In the second step thermo-mechanical analyses have been carried out on the obtained configuration to investigate the potential and limits of the proposed prototype, with a particular reference to the ma…
MHD Free Convection in Helium-Cooled Lithium-Lead Blanket Modules for the Demonstration Fusion Reactor
2003
Integrated multi-physics design tool for fusion breeding blanket systems - development and validation
2020
Il Breeding Blanket (BB) del reattore DEMO rappresenta un sistema complesso in un ambiente pericoloso. Infatti, esso deve soddisfare diversi requisiti e vincoli ingegneristici sia di tipo nucleare, termo-strutturale che di sicurezza. Per questi motivi, è necessaria una progettazione omnicomprensiva che preveda l'applicazione di strumenti avanzati di simulazione basati su approcci multi-fisici. Questi strumenti devono eseguire simultaneamente diversi tipi di analisi. Tre di esse possono essere considerate prioritarie e propedeutiche per lo studio di tutti gli altri fenomeni riguardanti il BB, vale a dire l´analisi nucleare, termo-fluidodinamica e strutturale. In questa tesi, è proposto un in…
Assessment of the Thermo-mechanical Performances of a DEMO Water-Cooled Liquid Metal Blanket Module
2015
Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA-Brasimone, CEA-Saclay and the University of Palermo to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket, both under normal operation and over-pressurization steady state scenarios. The research campaign has been carried out following a theoretical-computational approach based on the finite element method (FEM) and adopting a qualified commercial FEM code. In particular, two different three-dimensional FEM models of the WCLL blanket module have been set-up to be used for normal operation and over-pressurization a…
Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditi…
2015
Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical-computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal-radial slices of the WCLL blanket module, have been set up. A particular attent…
Investigation of the DEMO WCLL Breeding Blanket Cooling Water Activation
2020
Abstract Within the framework of the activities foreseen by the EUROfusion action on the cooling water activation assessment for a DEMO reactor equipped with a Water Cooled Lithium Lead Breeding Blanket (WCLL BB), the University of Palermo is involved in the assessment of dose rates induced by the decay of nitrogen radioisotopes produced by water activation, nearby the main components (e.g. isolation valves) of both First Wall (FW) and Breeder Zone (BZ) cooling circuits. In particular, the aim of this work is to evaluate the spatial distribution of nitrogen isotopes (16N and 17N) in the WCLL BB cooling circuits. To this purpose, a coupled neutronic/fluid-dynamic problem is solved following …
On the thermal dynamic behaviour of the helium-cooled DEMO fusion reactor
2019
Abstract The EU-DEMO conceptual design is being conducted among research institutions and universities from 26 countries of European Union, Switzerland and Ukraine. Its mission is to realise electricity from nuclear fusion reaction by 2050. As DEMO has been conceived to deliver net electricity to the grid, the choice of the Breeding Blanket (BB) coolant plays a pivotal role in the reactor design having a strong influence on plant operation, safety and maintenance. In particular, due to the pulsed nature of the heat source, the Primary Heat Transfer System (PHTS) becomes a very important actor of the Balance of Plant (BoP) together with the Power Conversion System (PCS). Moreover, aiming to …
On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module
2016
Abstract Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical p…
Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket
2016
Abstract The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with…