Search results for "DIMENSION"

showing 10 items of 2766 documents

Asymptotics for Graded Capelli Polynomials

2014

The finite dimensional simple superalgebras play an important role in the theory of PI-algebras in characteristic zero. The main goal of this paper is to characterize the T 2-ideal of graded identities of any such algebra by considering the growth of the corresponding supervariety. We consider the T 2-ideal Γ M+1,L+1 generated by the graded Capelli polynomials C a p M+1[Y,X] and C a p L+1[Z,X] alternanting on M+1 even variables and L+1 odd variables, respectively. We prove that the graded codimensions of a simple finite dimensional superalgebra are asymptotically equal to the graded codimensions of the T 2-ideal Γ M+1,L+1, for some fixed natural numbers M and L. In particular csupn(Γk2+l2+1…

CombinatoricsDiscrete mathematicsSettore MAT/02 - AlgebraMathematics::Commutative AlgebraGeneral MathematicsSuperalgebras Polynomial identities Codimensions GrowthZero (complex analysis)Natural numberAlgebra over a fieldSuperalgebraMathematics
researchProduct

On the Low-Dimensional Steiner Minimum Tree Problem in Hamming Metric

2011

It is known that the d-dimensional Steiner Minimum Tree Problem in Hamming metric is NP-complete if d is considered to be a part of the input. On the other hand, it was an open question whether the problem is also NP-complete in fixed dimensions. In this paper we answer this question by showing that the problem is NP-complete for any dimension strictly greater than 2. We also show that the Steiner ratio is 2 - 2/d for d ≥ 2. Using this result, we tailor the analysis of the so-called k-LCA approximation algorithm and show improved approximation guarantees for the special cases d = 3 and d = 4.

CombinatoricsDiscrete mathematicssymbols.namesakeHamming graphSteiner minimum treeDimension (graph theory)symbolsApproximation algorithmHamming distanceSteiner tree problemMathematics
researchProduct

Mappings of finite distortion: discreteness and openness for quasi-light mappings

2005

Abstract Let f ∈ W 1 , n ( Ω , R n ) be a continuous mapping so that the components of the preimage of each y ∈ R n are compact. We show that f is open and discrete if | D f ( x ) | n ⩽ K ( x ) J f ( x ) a.e. where K ( x ) ⩾ 1 and K n − 1 / Φ ( log ( e + K ) ) ∈ L 1 ( Ω ) for a function Φ that satisfies ∫ 1 ∞ 1 / Φ ( t ) d t = ∞ and some technical conditions. This divergence condition on Φ is shown to be sharp.

CombinatoricsDistortion (mathematics)Open mappingApplied MathematicsHausdorff dimensionMathematical analysisFunction (mathematics)Mathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

Old and New on the Quasihyperbolic Metric

1998

Let D be a proper subdomain of \( {\mathbb{R}^d}\). Following Gehring and Palka [GP] we define the quasihyperbolic distance between a pair x 1, x 2 of points in D as the infimum of \( {\smallint _\gamma }\frac{{ds}}{{D\left( {x,\partial D} \right)}}\) over all rectifiable curves γ joining x 1, x 2 in D. We denote the quasihyperbolic distance between x 1, x 2 by k D (x 1, x 2). As pointed out by Gehring and Osgood [GO], x 1 and x 2 can be joined by a quasihyperbolic geodesic; also see [Mr]. The quasihyperbolic metric is comparable to the usual hyperbolic metric in a simply connected plane domain by the Koebe distortion theorem. For a multiply connected plane domain D these two metrics are co…

CombinatoricsDistortion (mathematics)Quasiconformal mappingGeodesicHausdorff dimensionMetric (mathematics)Simply connected spaceBoundary (topology)Domain (mathematical analysis)Mathematics
researchProduct

Counterexamples to the Kneser conjecture in dimension four.

1995

We construct a connected closed orientable smooth four-manifold whose fundamental group is the free product of two non-trivial groups such that it is not homotopy equivalent toM 0#M 1 unlessM 0 orM 1 is homeomorphic toS 4. LetN be the nucleus of the minimal elliptic Enrique surfaceV 1(2, 2) and putM=N∪ ∂NN. The fundamental group ofM splits as ℤ/2 * ℤ/2. We prove thatM#k(S 2×S2) is diffeomorphic toM 0#M 1 for non-simply connected closed smooth four-manifoldsM 0 andM 1 if and only ifk≥8. On the other hand we show thatM is homeomorphic toM 0#M 1 for closed topological four-manifoldsM 0 andM 1 withπ 1(Mi)=ℤ/2.

CombinatoricsFundamental groupConjectureFree productGeneral MathematicsHomotopyDimension (graph theory)DiffeomorphismCounterexampleMathematics
researchProduct

Hausdorff measures and dimension

1995

CombinatoricsHausdorff distancePacking dimensionHausdorff dimensionMinkowski–Bouligand dimensionDimension functionHausdorff measureOuter measureEffective dimensionMathematics
researchProduct

Hausdorff measures, Hölder continuous maps and self-similar fractals

1993

Let f: A → ℝn be Hölder continuous with exponent α, 0 < α ≼ 1, where A ⊂ ℝm has finite m-dimensional Lebesgue measure. Then, as is easy to see and well-known, the s-dimensional Hausdorif measure HS(fA) is finite for s = m/α. Many fractal-type sets fA also have positive Hs measure. This is so for example if m = 1 and f is a natural parametrization of the Koch snow flake curve in ℝ2. Then s = log 4/log 3 and α = log 3/log 4. In this paper we study the question of what s-dimensional sets in can intersect some image fA in a set of positive Hs measure where A ⊂ ℝm and f: A → ℝn is (m/s)-Hölder continuous. In Theorem 3·3 we give a general density result for such Holder surfacesfA which implies…

CombinatoricsLebesgue measureRiesz–Markov–Kakutani representation theoremGeneral MathematicsTotally disconnected spaceHausdorff dimensionMathematical analysisOuter measureAlmost everywhereHausdorff measureMeasure (mathematics)MathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

On Certain Metrizable Locally Convex Spaces

1986

Publisher Summary This chapter discusses on certain metrizable locally convex spaces. The linear spaces used are defined over the field IK of real or complex numbers. The word "space" will mean "Hausdorff locally convex space". This chapter presents a proposition which states if U be a neighborhood of the origin in a space E. If A is a barrel in E which is not a neighborhood of the origin and F is a closed subspace of finite codimension in E’ [σ(E’,E)], then U° ∩ F does not contain A° ∩ F. Suppose that U° ∩ F contain A° ∩ F. Then A° ∩ F is equicontinuous hence W is also equicontinuous. Since W° is contained in A, it follows that A is a neighborhood of the origin, a contradiction.

CombinatoricsLocally convex topological vector spaceMetrization theoremConvex setHausdorff spaceMathematics::General TopologyField (mathematics)CodimensionSpace (mathematics)EquicontinuityMathematics
researchProduct

Exponential Codimension Growth of PI Algebras: An Exact Estimate

1999

Abstract LetAbe an associative PI-algebra over a fieldFof characteristic zero. By studying the exponential behavior of the sequence of codimensions {cn(A)} ofA, we prove thatInv(A)=limn→∞  c n ( A ) always exists and is an integer. We also give an explicit way for computing such integer: letBbe a finite dimensionalZ2-graded algebra whose Grassmann envelopeG(B) satisfies the same identities ofA; thenInv(A)=Inv(G(B))=dim C(0)+dim C(1)whereC(0)+C(1)is a suitableZ2-graded semisimple subalgebra ofB.

CombinatoricsMathematics(all)SequenceMathematics::Commutative AlgebraIntegerGeneral MathematicsSubalgebraZero (complex analysis)PiCodimensionAssociative propertyMathematicsExponential functionAdvances in Mathematics
researchProduct

On the lattice of J-subnormal subgroups

1992

CombinatoricsMiller indexReciprocal latticeParticle in a one-dimensional latticeAlgebra and Number TheoryLattice constantLattice planeEmpty lattice approximationHexagonal latticeLattice (discrete subgroup)MathematicsJournal of Algebra
researchProduct