Search results for "DOTS"
showing 10 items of 181 documents
Carbon Dots Dispersed on Graphene/SiO2/Si: A Morphological Study
2019
Low-dimensional carbon materials occupy a relevant role in the field of nanotechnology. Herein, the authors report a study conducted by atomic force microscopy and Raman spectroscopy on the deposition of carbon dots onto graphene surfaces. The study aims at understanding if and how the morphology and the microstructure of chemical vapor deposited graphene on Si/SiO2 may change due to the interaction with the carbon dots. Potential alteration in the graphene's electrical properties might be detrimental for optoelectronic applications. The deposition of carbon dots dispersed in water and ethanol solvents are explored to investigate the effect of solvents with different fluidic properties. The…
Photoinduced charge separation in functional carbon-silver nanohybrids
2022
In recent times, nanoscience is devoting growing interest to the easy assembly of well-established nanomaterials into hybrid nanostructures displaying new emerging features. Here, we study the photophysicochemical response of binary nanohybrids obtained by the spontaneous coupling of luminescent carbon dots to silver nanoparticles with controlled surface charge. Evidence of the successful coupling is obtained by steady-state and time resolved optical measurements and further confirmed by direct imaging. We demonstrate strong interactions within nanohybrids, which can be modelled in terms of a sub-picosecond electron transfer from photoexcited carbon dots to silver nanoparticles. Accordingly…
Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and Radical Scavenging Activity
2018
Hybrid diimidazolium-based ionogels were obtained by dispersing nitrogen-doped carbon nanodots (NCNDs) in ionic liquid (IL) solutions and by using dicationic organic salts as gelators. The properties of the NCND-ionogels were studied in terms of thermal stability, mechanical strength, morphology, rheological, and microscopic analyses. Insights into the formation of the hybrid soft material were attained from kinetics of sol-gel phase transition and from estimating the size of the aggregates, obtained from opacity and resonance light-scattering measurements. We demonstrate that, on one hand, NCNDs were able to favor the gel formation both in the presence of gelating and nongelating ILs. On t…
Quantum dot/cyclodextrin supramolecular systems based on efficient molecular recognition and their use for sensing.
2011
A supramolecular system based on ketoprofen functionalised CdSe/ZnS nanoparticles and pyrene-modified β-CD was prepared and successfully used for molecular sensing of different analytes. In addition, a strategy for the individual recovery of all the components of the sensing assay is reported.
Multi-photon imaging of amine-functionalized silica nanoparticles.
2012
A convenient and simple strategy for preparing water soluble, photoluminescent functionalized silica nanoparticles (M-dots) in the absence of fluorophores or metal doping is demonstrated. These M-dots can be used for bioimaging using one and two-photon microscopy. Because of their high photostability, low toxicity and high biocompatibility compared with Lumidot™ CdSe/ZnS quantum dots, functionalized silica particles are superior alternatives for current bioimaging platforms. Moreover, the presence of a free amine group at the surface of the M-dots allows biomolecule conjugation (e.g. with antibodies, proteins) in a single step for converting these photoluminescent SiO(2) nanoparticles into …
Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique.
2015
In this paper, the surface modification of CdSe- and CdZnS-based quantum dots (QDs) with a functional silica shell is reported. Functionalized silica shells are prepared by two routes: either by ligand exchange and a modified Stober process or by a miniemulsion process with amphiphilic poly(oxyethylene) nonylphenylether also know as Igepal CO-520 (IG) as oligomeric amphiphile and modified silica precursors. The polymerizable groups on the functionalized silica shell allow covalent bonding to a polymer matrix and prevent demixing during polymerization and crosslinking. This allows the homogeneous incorporation of QDs in a crosslinked polymer matrix. This paper furthermore demonstrates that t…
Functional CdSe and CdSe/ZnS nanoparticles capped with thiols: photophysical and photochemical properties and applications as sensors
2013
Esta tesis se centra en el efecto simbiótico entre los QDs de CdSe o CdSe/ZnS y sus ligandos orgánicos, y las ventajas de este efecto para mejorar la funcionalidad del QD y/o del ligando, o crear una nueva funcionalidad del sistema. Así : 1. la superficie de las nanopartícula recubierta con ligandos orgánicos puede permitir al QD i) permanecer estable en disolventes orgánicos o acuosos, debido a la repulsión estérica o iónica entre las nanopartículas, ii) mantener o aumentar sus propiedades emisivas (pasivación de los defectos de superficie, aumento de distancia entre nanopartícula y moléculas desactivadoras), y/o iii) para proporcionar funcionalidad a la nanopartícula. 2. la forma esférica…
Exciton and multiexciton optical properties of single InAs/GaAs site-controlled quantum dots
2013
We have studied the optical properties of InAs site-controlled quantum dots (SCQDs) grown on pre-patterned GaAs substrates. Since InAs nucleates preferentially on the lithography motifs, the location of the resulting QDs is determined by the pattern, which is fabricated by local oxidation nanolithography. Optical characterization has been performed on such SCQDs to study the fundamental and excited states. At the ground state different exciton complex transitions of about 500 μeV linewidth have been identified and the fine structure splitting of the neutral exciton has been determined (≈65 μeV). The observed electronic structure covers the demands of future quantum information technologies.…
Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and …
2022
Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of …
An Overview of Functionalized Graphene Nanomaterials for Advanced Applications
2021
Interest in the development of graphene-based materials for advanced applications is growing, because of the unique features of such nanomaterials and, above all, of their outstanding versatility, which enables several functionalization pathways that lead to materials with extremely tunable properties and architectures. This review is focused on the careful examination of relationships between synthetic approaches currently used to derivatize graphene, main properties achieved, and target applications proposed. Use of functionalized graphene nanomaterials in six engineering areas (materials with enhanced mechanical and thermal performance, energy, sensors, biomedical, water treatment, and c…