Search results for "Differentia"
showing 10 items of 8428 documents
Dextran-based therapeutic nanoparticles for hepatic drug delivery.
2016
Aim: Evaluation of dextran-based nanoparticles (DNP) as a drug delivery system to target myeloid cells of the liver. Materials & methods: DNP were synthesized and optionally PEGylated. Their toxicity and cellular uptake were studied in vitro. Empty and siRNA-carrying DNP were tested in vivo with regard to biodistribution and cellular uptake. Results: In vitro, DNP were taken up by cells of the myeloid lineage without compromising their viability. In vivo, empty and siRNA-carrying DNP distributed to the liver where a single treatment addressed approximately 70% of macrophages and dendritic cells. Serum parameters indicated no in vivo toxicity. Conclusion: DNP are multifunctional liver-s…
Dual Function Molecules and Processes in Cell Fate Decision: A Preface to the Special Issue
2020
A lot of water has passed under the bridge since 1999, when C.J. Jeffery stated in a pioneering review that “the idea of one gene-one protein-one function has become too simple” [...]
H-ferritin and proinflammatory cytokines are increased in the bone marrow of patients affected by macrophage activation syndrome
2017
Summary Macrophage activation syndrome (MAS) is hyperinflammatory life-threatening syndrome, associated typically with high levels of serum ferritin. This is an iron storage protein including heavy (H) and light (L) subunits, categorized on their molecular weight. The H-/L subunits ratio may be different in tissues, depending on the specific tissue and pathophysiological status. In this study, we analysed the bone marrow (BM) biopsies of adult MAS patients to assess the presence of: (i) H-ferritin and L-ferritin; (ii) CD68+/H-ferritin+ and CD68+/L-ferritin+; and (iii) interleukin (IL)-1β, tumour necrosis factor (TNF) and interferon (IFN)-γ. We also explored possible correlations of these re…
Bone regeneration in the stem cell era: safe play for the patient?
2017
The past decade has seen outstanding scientific progress in the field of stem cell (SC) research and clinical application. SCs are convenient both technically and biologically: they are easy to find and to culture and they can differentiate in virtually all tissues and even in whole organs. Induced pluripotent stem cells (iPSs) are a type of pluripotent SC generated in vitro directly from mature cells through the introduction of key transcription factors. The use of iPSs, however tantalizing, poses serious safety concerns because of their genomic instability. Recently, it has been suggested that the main mechanism of SC action relies on paracrine signals. Therefore, the secretome would be p…
The iNOS Activity During an Immune Response Controls the CNS Pathology in Experimental Autoimmune Encephalomyelitis
2019
Inducible nitric oxide synthase (iNOS) plays a critical role in the regulation of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Previous studies have shown that iNOS plays pathogenic as well as regulatory roles in MS and EAE. However, how does iNOS alters the pathophysiology of the central nervous system (CNS) in neuronal autoimmunity is not clearly understood. In the present work, we show that treatment of mice with L-NAME, an iNOS inhibitor, during the antigen-priming phase primarily alters brain pathology, while in the subsequent effector phase of the immune response, the spinal cord is involved. Inhibition of iNOS during the priming phase of the immune res…
Reciprocal regulation of the Il9 locus by counteracting activities of transcription factors IRF1 and IRF4.
2017
The T helper 9 (Th9) cell transcriptional network is formed by an equilibrium of signals induced by cytokines and antigen presentation. Here we show that, within this network, two interferon regulatory factors (IRF), IRF1 and IRF4, display opposing effects on Th9 differentiation. IRF4 dose-dependently promotes, whereas IRF1 inhibits, IL-9 production. Likewise, IRF1 inhibits IL-9 production by human Th9 cells. IRF1 counteracts IRF4-driven Il9 promoter activity, and IRF1 and IRF4 have opposing function on activating histone modifications, thus modulating RNA polymerase II recruitment. IRF1 occupancy correlates with decreased IRF4 abundance, suggesting an IRF1-IRF4-binding competition at the I…
Calcium Polyphosphate Nanoparticles Act as an Effective Inorganic Phosphate Source during Osteogenic Differentiation of Human Mesenchymal Stem Cells
2019
The ability of bone-marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to differentiate into osteoblasts makes them the ideal candidate for cell-based therapies targeting bone-diseases. Polyphosphate (polyP) is increasingly being studied as a potential inorganic source of phosphate for extracellular matrix mineralisation. The aim of this study is to investigate whether polyP can effectively be used as a phosphate source during the in vitro osteogenic differentiation of human BM-MSCs. Human BM-MSCs are cultivated under osteogenic conditions for 28 days with phosphate provided in the form of organic &beta
Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance
2016
International audience; Caloric restriction mimetics (CRMs) mimic the biochemical effects of nutrient deprivation by reducing lysine acetylation of cellular proteins, thus triggering autophagy. Treatment with the CRM hydroxycitrate, an inhibitor of ATP citrate lyase, induced the depletion of regulatory T cells (which dampen anticancer immunity) from autophagy-competent, but not autophagy-deficient, mutant KRAS-induced lung cancers in mice, thereby improving anticancer immunosurveillance and reducing tumor mass. Short-term fasting or treatment with several chemically unrelated autophagy-inducing CRMs, including hydroxycitrate and spermidine, improved the inhibition of tumor growth by chemoth…
Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis
2020
Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression
Extracellular Vesicles Shed by Melanoma Cells Contain a Modified Form of H1.0 Linker Histone and H1.0 mRNA-binding Proteins
2016
Extracellular vesicles (EVs) are shed in the extracellular environment by both prokaryotes and eukaryotes. Although produced from both normal and cancer cells, malignant cells release a much higher amount of EVs, which also contain tumor-specific proteins and RNAs. We previously found that G26/24 oligodendroglioma cells shed EVs that contain the pro-apoptotic factors FasL and TRAIL1-2. Interestingly, G26/24 release, via EVs, extracellular matrix remodelling proteases3, and H1° histone protein4, and mRNA. To shed further light on the role of EVs in discarding proteins and mRNAs otherwise able to counteract proliferative signals, we studied a melanoma cell line (A375). We found that also thes…