Search results for "Domain analysis"
showing 10 items of 28 documents
Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves
2016
Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-nanosecond pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predic…
Numerical and experimental study of liquid metal stirring by rotating permanent magnets
2018
In this work, we study liquid gallium stirring by rotating permanent magnets. We demonstrate possibility of easily creating different flow patterns by rotating permanent magnets, which can be industrially important for controlling heat and mass transfer processes in the system. Unlike the typical approach of simulating magnet rotation as a transient problem and time-averaging the Lorentz forces, we solve the magnet rotation as a harmonic (frequency domain) problem, which leads to forces equal to time-averaged ones and decreases the simulation time considerably. Numerical results are validated using qualitative flow structure results from the neutron radiography visualization of tracer parti…
Transmission properties at microwave frequencies of two-dimensional metallic lattices
1999
The transmission properties of different metallic photonic lattices (square and rectangular) have been experimentally studied. A numerical algorithm based on time domain finite differences has been used for simulating these photonic structures. The introduction of defects in the two-dimensional metallic lattice modifies its transmission spectrum. If metal rods are eliminated from (or added to) the lattice, extremely narrow peaks are observed at some particular frequencies below (or above) the band pass edge. Vicente.Such@uv.es ; Enrique.Navarro@uv.es
High-quality discretizations for microwave simulations
2016
We apply high-quality discretizations to simulate electromagnetic microwaves. Instead of the vector field presentations, we focus on differential forms and discretize the model in the spatial domain using the discrete exterior calculus. At the discrete level, both the Hodge operators and the time discretization are optimized for time-harmonic simulations. Non-uniform spatial and temporal discretization are applied in problems in which the wavelength is highly-variable and geometry contains sub-wavelength structures. peerReviewed
Interference Effects in Photodetachment of F- in a Strong Circularly Polarized Laser Pulse
2007
A numerical simulation of photodetachment of F{sup -} by a circularly polarized laser pulse has been accomplished by using a Keldysh-type approach. The numerical results are in agreement with measurements of photoelectron energy spectra recently reported in the literature. The features exhibited by the spectra are traced back to quantum interference effects, in the same spirit as in a double-slit experiment in the time doma0008.
Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices
2004
An extension of the finite difference time domain is applied to solve the Schrödinger equation. A systematic analysis of stability and convergence of this technique is carried out in this article. The numerical scheme used to solve the Schrödinger equation differs from the scheme found in electromagnetics. Also, the unit cell employed to model quantum devices is different from the Yee cell used by the electrical engineering community. A bound for the time step is derived to ensure stability. Several numerical experiments in quantum structures demonstrate the accuracy of a second order, comparable to the analysis of electromagnetic devices with the Yee cell. a!Electronic mail: Antonio.Sorian…
Dependability-Based Reliability Analysis in URC Networks: Availability in the Space Domain
2019
Ultra-reliable low latency communication (URLLC), which refers to achieving almost 100% reliability at a certain (satisfactory) level of services and stringent latency, is one of the key requirements for 5G networks. However, most prior studies on reliable communication did not address space domain analysis. Neither were they pursued from a dependability perspective. This paper addresses the ultra-reliable communication (URC) aspect of URLLC and aims at advocating the concept of URC from a dependability perspective in the space domain. We perform in-depth analysis on URC considering both the spatial characteristics of cell deployment and user distributions, as well as service requirements. …
Developing Software with Domain-Driven Model Reuse
2015
This chapter presents an approach to software development where model-driven development and software reuse facilities are combined in a natural way. It shows how model transformations building a Platform Independent Model (PIM) can be applied directly to the requirements specified in RSL by domain experts. Further development of the software case (PSM, code) is also supported by transformations, which in addition ensure a rich traceability within the software case. Alternatively, the PSM model and code can also be generated directly from requirements in RSL, thus providing fast development of the final code of at least a system prototype in many situations. The reuse support relies on a si…
Spectral analysis of the beat-to-beat variability of arterial compliance
2022
Arterial compliance is an important parameter influencing ventricular-arterial coupling, depending on structural and functional mechanics of arteries. In this study, the spontaneous beat-to-beat variability of arterial compliance was investigated in time and frequency domains in thirty-nine young and healthy subjects monitored in the supine resting state and during head-up tilt. Spectral decomposition was applied to retrieve the spectral content of the time series associated to low (LF) and high frequency (HF) oscillatory components. Our results highlight: (i) a decrease of arterial compliance with tilt, in agreement with previous studies; (ii) an increase of the LF power content concurrent…
Assessment of Cardiorespiratory Interactions During Spontaneous and Controlled Breathing: Linear Parametric Analysis
2022
In this work, we perform a linear parametric analysis of cardiorespiratory interactions in bivariate time series of heart period (HP) and respiration (RESP) measured in 19 healthy subjects during spontaneous breathing and controlled breathing at varying breathing frequency. The analysis is carried out computing measures of the total and causal interaction between HP and RESP variability in both time and frequency domains (low- and high-frequency, LF and HF). Results highlight strong cardiorespiratory interactions in the time domain and within the HF band that are not affected by the paced breathing condition. Interactions in the LF band are weaker and prevalent along the direction from HP t…