Search results for "Dot"

showing 10 items of 5147 documents

Microtubule disruption changes endothelial cell mechanics and adhesion

2019

AbstractThe interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 3…

0301 basic medicineCell biologyIntravital MicroscopyScienceConfocalCellBiophysicsCell Culture Techniques02 engineering and technologyMicroscopy Atomic ForceMechanotransduction CellularMicrotubulesArticleUmbilical veinCell Line03 medical and health sciencesMicrotubuleCell AdhesionHuman Umbilical Vein Endothelial CellsFluorescence microscopemedicineHumansCytoskeletonCytoskeletonMicroscopy ConfocalMultidisciplinaryDose-Response Relationship DrugChemistryPhysicsQRMechanicsAdhesion021001 nanoscience & nanotechnologyMaterials scienceApplied physicsEndothelial stem cell030104 developmental biologymedicine.anatomical_structureMicroscopy FluorescenceMedicineBiomaterials - cellsColchicine0210 nano-technologyBiological physicsScientific Reports
researchProduct

Circadian Rhythm in Adipose Tissue: Novel Antioxidant Target for Metabolic and Cardiovascular Diseases

2020

Obesity is a major risk factor for most metabolic and cardiovascular disorders. Adipose tissue is an important endocrine organ that modulates metabolic and cardiovascular health by secreting signaling molecules. Oxidative stress is a common mechanism associated with metabolic and cardiovascular complications including obesity, type 2 diabetes, and hypertension. Oxidative stress can cause adipose tissue dysfunction. Accumulating data from both humans and experimental animal models suggest that adipose tissue function and oxidative stress have an innate connection with the intrinsic biological clock. Circadian clock orchestrates biological processes in adjusting to daily environmental changes…

0301 basic medicineCell signalingPhysiologyClinical BiochemistryCircadian clockAdipose tissueAdipokineReviewBioinformaticsmedicine.disease_causeBiochemistrysirtuin 103 medical and health sciences0302 clinical medicineAdipokinesclock genesMedicineoxidative stressCircadian rhythmbranched-chain amino acidsMolecular Biologyendothelial nitric oxide synthasebiologySirtuin 1business.industrylcsh:RM1-950Cell BiologyCLOCK030104 developmental biologylcsh:Therapeutics. Pharmacologybiology.proteinbusiness030217 neurology & neurosurgeryOxidative stressAntioxidants
researchProduct

Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies

2020

Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cel…

0301 basic medicineCell signalingProgrammed cell deathPhysiologyClinical BiochemistryInflammationReviewmedicine.disease_causeBiochemistryProinflammatory cytokine03 medical and health sciences0302 clinical medicinemedicineoxidative stressEndothelial dysfunctionMolecular Biologyreactive oxygen speciesRetinabusiness.industrylcsh:RM1-950Cell Biologymedicine.diseaseCell biology030104 developmental biologymedicine.anatomical_structurelcsh:Therapeutics. Pharmacology030221 ophthalmology & optometryTumor necrosis factor alpharetinal diseasemedicine.symptombusinessvascular endotheliumOxidative stressAntioxidants
researchProduct

Tissue factor at the crossroad of coagulation and cell signaling

2018

The tissue factor (TF) pathway plays a central role in hemostasis and thrombo-inflammatory diseases. Although structure-function relationships of the TF initiation complex are elucidated, new facets of the dynamic regulation of TF?s activities on cells continue to emerge. Cellular pathways that render TF non-coagulant participate in signaling of distinct TF complexes with associated proteases through the protease-activated receptor (PAR) family of G-protein coupled receptors. Additional coreceptors, including the endothelial protein C receptor (EPCR) and integrins, confer signaling specificity by directing subcellular localization and trafficking. We here review how TF is switchedbetween it…

0301 basic medicineCell signalingProteasesCIENCIAS MÉDICAS Y DE LA SALUDIntegrinInmunologíaFactor VIIaThromboplastin03 medical and health sciencesTissue factorPROTEINASE- ACTIVATED RECEPTORSNeoplasmsmedicineAnimalsHumansReceptor PAR-2Myeloid CellsHEMOSTASISProtease-activated receptorENDOTHELIAL PROTEIN C RECEPTORBlood CoagulationInflammationEndothelial protein C receptorInnate immune systembiologyChemistryEndothelial CellsThrombosisInflammasomeHematologyCell biologyTHROMBOSISMedicina Básica030104 developmental biologyFactor Xabiology.proteinPROTEIN DISULFIDE-ISOMERASESSignal Transductionmedicine.drugJournal of Thrombosis and Haemostasis
researchProduct

Alkaline phosphatase dual-binding sites for collagen dictate cell migration and microvessel assembly in vitro

2020

Interactions between cell types, growth factors, and extracellular matrix components involved in angiogenesis are crucial for new vessel formation leading to tissue regeneration. This study investigated whether cocultures of fibroblasts and endothelial cells (ECs; from macro- or microvasculature) play a role in the formation of microvessel-like structures by ECs, as well as modulate fibroblast differentiation and growth factors production (vascular endothelial cell growth factor, basic fibroblast growth factor, active transforming growth factor-beta 1, and interleukin-8), which are important for vessel sprouting and maturation. Data obtained revealed that in vitro coculture systems of fibro…

0301 basic medicineCell typeAngiogenesisProtein ConformationBasic fibroblast growth factorNeovascularization PhysiologicIn Vitro TechniquesBiochemistryExtracellular matrix03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell MovementmedicineHumansFibroblastMolecular BiologyMicrovesselCells CulturedCell ProliferationBinding SitesChemistryHealth sciences Medical and Health sciencesCiências médicas e da saúdeCell migrationCell DifferentiationCell BiologyFibroblastsAlkaline PhosphataseCell biology030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisMicrovesselsMedical and Health sciencesAlkaline phosphataseCollagenEndothelium VascularCiências da Saúde Ciências médicas e da saúde
researchProduct

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

2017

We created a 3D cell co-culture model by combining nanoengineered mesenchymal stem cells (MSCs) with the metastatic breast cancer cell line MDA-MD-231 and primary breast cancer cell line MCF7 to explore the transfer of quantum dots (QDs) to cancer cells. First, the optimal conditions for high-content QD loading in MSCs were established. Then, QD uptake in breast cancer cells was assessed after 24 h in a 3D co-culture with nanoengineered MSCs. We found that incubation of MSCs with QDs in a serum-free medium provided the best accumulation results. It was found that 24 h post-labelling QDs were eliminated from MSCs. Our results demonstrate that breast cancer cells efficiently uptake QDs that a…

0301 basic medicineCellGeneral Physics and Astronomyquantum dotsspheroidslcsh:Chemical technologylcsh:TechnologyFull Research Paper03 medical and health sciences3D cell culturemedicineNanotechnologycancerlcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:Scienceskin and connective tissue diseases3D cell culturemesenchymal stem cellslcsh:TChemistryMesenchymal stem cellCancermedicine.diseaseMetastatic breast cancerlcsh:QC1-999Nanoscience030104 developmental biologymedicine.anatomical_structureTargeted drug deliveryCell cultureCancer cellCancer researchlcsh:Qlcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Differentiation and characterization of rat adipose tissue mesenchymal stem cells into endothelial-like cells

2018

In this study, mesenchymal stem cells were isolated from rat adipose tissue (AD-MSCs) to characterize and differentiate them into endothelial-like cells. AD-MSCs were isolated by mechanical and enzymatic treatments, and their identity was verified by colony-forming units (CFU) test and by differentiation into cells of mesodermal lineages. The endothelial differentiation was induced by plating another aliquot of cells in EGM-2 medium, enriched with specific endothelial growth factors. Five subcultures were performed. The expression of stemness genes (OCT4, SOX2 and NANOG) was investigated. The presence of CD90 and the absence of the CD45 were evaluated by flow cytometry. The endothelial-like…

0301 basic medicineCellular differentiationSettore VET/09 - Clinica Chirurgica VeterinariaSettore BIO/13 - Biologia Applicataimmunophenotypical analysiCell DifferentiationNanog Homeobox ProteinGeneral MedicineCadherinsFlow CytometryUp-RegulationPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellDrug CombinationsAdipose Tissueembryonic structuresVeterinary (all)ProteoglycansCollagenStem cellHomeobox protein NANOGadipose-derived mesenchymal stem cellDown-RegulationCD146 AntigenBiology03 medical and health sciencesMatrigel assaySOX2Antigens CDAdipose-derived mesenchymal stem cellsAnimalsEndothelial cells differentiationRats WistarImmunophenotypical analysisMatrigelGeneral VeterinaryGene Expression ProfilingSOXB1 Transcription FactorsMesenchymal stem cellEndothelial CellsMesenchymal Stem Cells3T3-L1Molecular biologyAdipose-derived mesenchymal stem cells; Endothelial cells differentiation; Gene expression; Immunophenotypical analysis; Matrigel assay; Rat; Veterinary (all)Culture MediaRats030104 developmental biologyadipose-derived mesenchymal stem cells; endothelial cells differentiation; gene expression; immunophenotypical analysis; matrigel assay; ratLeukocyte Common AntigensThy-1 AntigensRatLamininGene expressionOctamer Transcription Factor-3
researchProduct

Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways.

2019

Abstract Inflammation and activation of the immune system are key molecular and cellular events in the pathogenesis of cardiovascular diseases, including atherosclerosis, hypertension-induced target-organ damage, and abdominal aortic aneurysm. Angiotensin II (Ang-II) is the main effector peptide hormone of the renin-angiotensin system. Beyond its role as a potent vasoconstrictor and regulator of blood pressure and fluid homeostasis, Ang-II is intimately involved in the development of vascular lesions in cardiovascular diseases through the activation of different immune cells. The migration of leukocytes from circulation to the arterial subendothelial space is a crucial immune response in le…

0301 basic medicineChemokineEndotheliumInflammationBiochemistry03 medical and health sciences0302 clinical medicineMediatorImmune systemPhysiology (medical)Leukocyte TraffickingLeukocytesMedicinebiologybusiness.industryCell adhesion moleculeAngiotensin IIEndothelial CellsAngiotensin IICell biology030104 developmental biologymedicine.anatomical_structurebiology.proteinmedicine.symptombusinessOxidation-Reduction030217 neurology & neurosurgerySignal TransductionFree radical biologymedicine
researchProduct

Bevacizumab diminishes inflammation in an acute endotoxin-induced uveitis model

2017

Este artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://www.frontiersin.org/articles/10.3389/fphar.2018.00649/full Introduction: Uveitis is an eye disease characterized by inflammation of the uvea and an early and exhaustive diagnosis is essential for its treatment. The aim of our study is to assess the potential toxicity and anti-inflammatory efficacy of Bevacizumab in an experimental uveitis model by subcutaneously injecting lipopolysaccharide into Lewis rats and to clarify its mechanism. Material and Methods: Blood–aqueous barrier integrity was assessed 24 h after endotoxin-induced uveitis (EIU) by analyzing two parameters: cell count and protein…

0301 basic medicineChemokineLipopolysaccharidegenetic structuresmedicine.medical_treatmentÚvea - Efectos de los medicamentos.chemokinesPharmacologymedicine.disease_causeendotoxin-induced uveitischemistry.chemical_compound0302 clinical medicineMedicineoxidative stressPharmacology (medical)Bevacizumab - Efectos fisiológicos.Bevacizumab - Efectos secundarios.Uvea - Effect of drugs on.Original ResearchEstrés oxidativo.biologyOxidative stress.medicine.anatomical_structureCytokineToxicityOjos - Enfermedades - Tratamiento.medicine.symptomUveitisPharmacology.InflammationFarmacología.bevacizumabBevacizumab - Physiological effect.Bevacizumab - Side effects.03 medical and health sciencesUveitis - Treatment.Eyes - Diseases - Treatment.Pharmacologybusiness.industrylcsh:RM1-950Uveítis - Tratamiento.Uveamedicine.diseaseeye diseasescytokines030104 developmental biologylcsh:Therapeutics. Pharmacologychemistryinflammation030221 ophthalmology & optometrybiology.proteinsense organsbusinessOxidative stress
researchProduct

Novel Immune Features of the Systemic Inflammation Associated with Primary Hypercholesterolemia: Changes in Cytokine/Chemokine Profile, Increased Pla…

2018

Primary hypercholesterolemia (PH) is associated with a low grade systemic inflammation that is likely the main driver of premature atherosclerosis. Accordingly, we characterized the immune cell behaviour in PH and its potential consequences. Whole blood from 22 PH patients and 21 age-matched controls was analysed by flow cytometry to determine the percentage of leukocyte immunophenotypes, activation, and platelet-leukocyte aggregates. Plasma markers were determined by Enzyme-Linked ImmunoSorbent Assay (ELISA). The adhesion of platelet-leukocyte aggregates to tumor necrosis factor-&alpha

0301 basic medicineChemokinemedicine.medical_treatmentlcsh:Medicinechemokines030204 cardiovascular system & hematologySystemic inflammationArticleendothelial dysfunction03 medical and health sciences0302 clinical medicineleukocyte activationResposta immunitàriaprimary hypercholesterolemiaplatelet activationMedicinePlateletPlatelet activationEndothelial dysfunctionSistema cardiovascularsystemic inflammationbiologybusiness.industryMonocytelcsh:REndoteli vascularGeneral Medicinemedicine.diseasecytokines030104 developmental biologyCytokinemedicine.anatomical_structureImmunologybiology.proteinTumor necrosis factor alphamedicine.symptombusinessJournal of clinical medicine
researchProduct