Search results for "Drug carrier"
showing 10 items of 329 documents
Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with "Saccharides"
2010
The synthesis of new capped silica mesoporous nanoparticles for on-command delivery applications is described. The gate-like functional hybrid systems consisted of nanoscopic MCM-41-based materials functionalized on the pore outlets with different “saccharide” derivatives and a dye contained in the mesopores. A series of hydrolyzed starch products as saccharides were selected. The mesoporous silica nanoparticles S1, S2, and S3 containing the grafted starch derivatives Glucidex 47, Gludicex 39, and Glucidex 29 were synthesized. Additionally, for comparative purposes solid S4 containing lactose was prepared. Delivery studies in pure water in the presence of pancreatin or -D-galactosidase were…
Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles
2013
[EN] A novel nanodevice consisting of mesoporous nanoparticles loaded with vancomycin and capped with epsilon-poly-L-lysine (epsilon-PL) was prepared and its interaction with different Gram-negative bacteria studied. A remarkable improvement in the efficacy of the antimicrobial drug epsilon-PL and a broadening of the antimicrobial spectrum of vancomycin is demonstrated.
Affinity scale between a carrier and a drug in DPI studied by atomic force microscopy.
2002
The dry powder inhalers (DPIs) consist, in the most cases, of ordered mixture where the particles adhesion results of interactions between the drug and the carrier. Generally, one step of production process is the micronization of the drug particles in order to reduce the size for ordered mixing optimization. But this operation is known to partially create an amorphous surface. In this case, surrounding storage conditions, like relative humidity (RH), are able to modify the percentage of amorphous drug surface. The aim of this study was to investigate surface reactivity, surface energy and direct force measurements by atomic force microscopy (AFM) between lactose (carrier) and zanamivir (dr…
Improving extracellular vesicles visualization: From static to motion
2020
AbstractIn the last decade, extracellular vesicles (EVs) have become a hot topic. The findings on EVs content and effects have made them a major field of interest in cancer research. EVs, are able to be internalized through integrins expressed in parental cells, in a tissue specific manner, as a key step of cancer progression and pre-metastatic niche formation. However, this specificity might lead to new opportunities in cancer treatment by using EVs as devices for drug delivery. For future applications of EVs in cancer, improved protocols and methods for EVs isolation and visualization are required. Our group has put efforts on developing a protocol able to track the EVs for in vivo intern…
Development of novel diolein–niosomes for cutaneous delivery of tretinoin: Influence of formulation and in vitro assessment
2014
Abstract This work describes innovative niosomes, composed of diolein alone or in association with the hydrophilic penetration enhancer Labrasol ® , as carriers for cutaneous drug delivery. The model drug was tretinoin and conventional, and Labrasol ® containing liposomes was used as controls to evaluate the influence of vesicle composition and the role of Labrasol ® on vesicle physico-chemical properties and performance as skin delivery system. Vesicles, prepared by the thin film hydration technique, were characterized in terms of size distribution, morphology, zeta potential, structure, incorporation efficiency, and rheological properties. The influence of carrier composition on tretinoin…
Relation between structural and release properties in a polysaccharide gel system.
2007
Abstract The potential utility of κ-carrageenan gels for preparing drug release devices is here shown. Structural properties of κ-carrageenan gels prepared with different salt composition and containing Ketoprofen sodium salt, as model drug, have been evaluated with static light scattering and rheological measurements. These properties have been correlated with release profiles in vitro at pH 5.5. Release properties from gelled matrices have been compared with those obtained by two commercial products containing the same drug. Results show that: i) in this system it is possible to easily control the gel texture by using different cationic concentration; ii) the kinetics of drug release by κ…
Hydrophilic and Hydrophobic Polymeric Derivatives of Anti-Inflammatory Agents Such as Alclofenac, Ketoprofen, and Ibuprofen
1991
Macromolecular prodrugs of a hydrophilic polymer [α,β-poly( N- hydroxyethyl)-DL-aspartamide (PHEA)] was used as a drug carrier. Three poly- (HEA)-NSAID adducts were studied: poly(HEA)-Alclofenac, poly(HEA)-Keto profen, and poly(HEA)-Ibuprofen. Prodrugs with different drug content were synthesized both as water-soluble and water-insoluble agents. Hydrolysis of water-soluble adducts in a simulated gastric juice was studied.
Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime
2021
For nanocarriers with low protein affinity, we show that the interaction of nanocarriers with cells is mainly affected by the density, the molecular weight, and the conformation of polyethylene glycol (PEG) chains bound to the nanocarrier surface. We achieve a reduction of nonspecific uptake of ovalbumin nanocarriers by dendritic cells using densely packed PEG chains with a "brush" conformation instead of the collapsed "mushroom" conformation. We also control to a minor extent the dysopsonin adsorption by tailoring the conformation of attached PEG on the nanocarriers. The brush conformation of PEG leads to a stealth behavior of the nanocarriers with inhibited uptake by phagocytic cells, whi…
Exploring the co-loading of lidocaine chemical forms in surfactant/phospholipid vesicles for improved skin delivery
2015
Abstract Objectives The present study was aimed at targeting the skin to deliver lidocaine loaded in surfactant/phospholipid vesicles tailored for improved local delivery. The influence of different formulation parameters was explored to maximise drug efficacy. Methods The vesicles were prepared using a mixture of soy lipids (Phospholipon 50) and a surfactant with penetration-enhancing properties (Oramix CG110, Labrasol, Labrafac PG or Labrafac CC), and loaded with lidocaine. The formulations were analysed in detail by cryo-TEM, SAXS, Turbiscan Lab, and tested in permeation experiments through new born pig skin, as a function of the chemical form and concentration of lidocaine (i.e. free ba…
Effect of pH on the transfer kinetics of an anti-inflammatory drug from polyaspartamide hydrogels to a lipid model membrane
1997
Abstract The release of a nonsteroidal anti-inflammatory drug (NSAID), 4-biphenylacetic acid (BPAA), from α,β-poly( N -hydroxyethyl)- dl -aspartamide (PHEA) hydrogels was tested at different pHs (4 and 7.4) by measuring the drug transfer from loaded hydrogel to dimyristoylphosphatidylcholine (DMPC) liposomes (multilamellar vesicles, MLV), chosen as a biomembrane model. This drug transfer was compared with the transfer from powdered drug and with drug classical. The perturbing effect of pure BPAA on the thermotropic behaviour of DMPC liposomes, in terms of transition temperature shift (Δ T m ) and enthalpy changes (Δ H ), was analysed at different pHs (4 and 7.4) by differential scanning cal…