Search results for "Dynamic"
showing 10 items of 12329 documents
A quantum dynamics study of the benzopyran ring opening guided by laser pulses
2014
Abstract The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of str…
Quantum dynamics of 16O in collision with ortho- and para-17O17O
2017
Abstract We report full quantum dynamical observables, such as integral and differential cross sections and rate constants, for the 16 O + 17 O 17 O reactive collision process. We particularly emphasize the effect coming from the nonzero nuclear spin of 17 O, leading to two nuclear spin isomers of 34 O 2 , ortho- and para- 34 O 2 which can be studied independently and behave differently. A comparison with the 16 O + 18 O 18 O collision is given. We find that processes involving 17 O 17 O are always faster than with 18 O 18 O.
Force probe simulations of a reversibly rebinding system: Impact of pulling device stiffness.
2017
We present a detailed study of the parameter dependence of force probe molecular dynamics (FPMD) simulations. Using a well studied calix[4]arene catenane dimer as a model system, we systematically vary the pulling velocity and the stiffness of the applied external potential. This allows us to investigate how the results of pulling simulations operating in the constant velocity mode (force-ramp mode) depend on the details of the simulation setup. The system studied has the further advantage of showing reversible rebinding meaning that we can monitor the opening and the rebinding transition. Many models designed to extract kinetic information from rupture force distributions work in the limit…
Data Reweighting in Metadynamics Simulations.
2020
The data collected along a metadynamics simulation can be used to recover information about the underlying unbiased system by means of a reweighting procedure. Here, we analyze the behavior of several reweighting techniques in terms of the quality of the reconstruction of the underlying unbiased free energy landscape in the early stages of the simulation and propose a simple reweighting scheme that we relate to the other techniques. We then show that the free energy landscape reconstructed from reweighted data can be more accurate than the negative bias potential depending on the reweighting technique, the stage of the simulation, and the adoption of well-tempered or standard metadynamics. …
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 …
2017
Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015 , 11 , 2036 ) are reported. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of the latter discrepancies, the …
Gas-Phase Synthesis of the Elusive Trisilicontetrahydride Species (Si3H4)
2016
The bimolecular gas-phase reaction of ground-state atomic silicon (Si; 3P) with disilane (Si2H6; 1A1g) was explored under single-collision conditions in a crossed molecular beam machine at a collision energy of 21 kJ mol–1. Combined with electronic structure calculations, the results suggest the formation of Si3H4 isomer(s) along with molecular hydrogen via indirect scattering dynamics through Si3H6 collision complex(es) and intersystem crossing from the triplet to the singlet surface. The nonadiabatic reaction dynamics can synthesize the energetically accessible singlet Si3H4 isomers in overall exoergic reaction(s) (−93 ± 21 kJ mol–1). All reasonable reaction products are either cyclic or …
Quantum Dynamics of the 17O + 32O2 Collision Process
2016
We report full quantum integral and differential cross sections and rate constants for the 17O + 32O2 reactive process. This constitutes the first quantum scattering study of the 17O16O16O system. We emphasize the comparison with the 18O + 32O2 collision in close connection to the mass-independent fractionation (hereafter referred to as MIF) puzzle for ozone in atmospheric chemistry. We find similar general trends in the cross sections and rate constants for both rare isotopes, but we note some singular behaviors peculiar to the use of 17O isotope, particularly at the lowest collision energies.
MD Simulation Investigation on the Binding Process of Smoke-Derived Germination Stimulants to Its Receptor
2019
Karrikins (KARs) are a class of smoke-derived seed germination stimulants with great significance in both agriculture and plant biology. By means of direct binding to the receptor protein KAI2, the compounds can initiate the KAR signal transduction pathway, hence triggering germination of the dormant seeds in the soil. In the research, several molecular dynamics (MD) simulation techniques were properly integrated to investigate the binding process of KAR1 to KAI2 and reveal the details of the whole binding event. The calculated binding free energy, -7.00 kcal/mol, is in good agreement with the experimental measurement, -6.83 kcal/mol. The obtained PMF profile indicates the existence of thre…
Effect of molecular Stokes shift on polariton dynamics
2021
When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light-matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry-Pérot cavities. Our results suggest that in the case …
Monte Carlo Simulations of Au38(SCH3)24 Nanocluster Using Distance-Based Machine Learning Methods
2020
We present an implementation of distance-based machine learning (ML) methods to create a realistic atomistic interaction potential to be used in Monte Carlo simulations of thermal dynamics of thiol...