Search results for "ELEMENT"

showing 10 items of 13601 documents

Simulation and optimization of the implantation of holmium atoms into metallic magnetic microcalorimeters for neutrino mass determination experiments

2017

Abstract Several novel experiments designed to investigate the electron neutrino mass in the sub-eV region are based on the calorimetric measurement of the 163Ho electron capture spectrum. For this the 163Ho source, with a required activity of the order of 1 to 100 Bq , needs to be enclosed in the detector, having a volume smaller than 10 − 3 mm 3 . Ion implantation is presently considered to be the most reliable method to enclose this source in the detector homogeneously distributed in a well defined volume. We have investigated the distribution of implanted holmium ions in different target materials and for different implantation energies by means of Monte Carlo simulations based on the S…

010302 applied physicsPhysicsNuclear and High Energy PhysicsElectron captureMonte Carlo methodDetectorchemistry.chemical_element01 natural sciencesIonIon implantationchemistry0103 physical sciencesAtomic physicsNeutrino010306 general physicsHolmiumInstrumentationElectron neutrinoNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Radiation emission at channeling of electrons in a strained layer undulator crystal

2013

Abstract Experiments have been performed at the Mainz Microtron MAMI to explore the radiation emission spectra from a crystalline undulator at electron beam energies of 270 and 855 MeV. The epitaxially grown graded composition strained layer Si 1 - x Ge x undulator had 4-period with a period length λ u = 9.9 μ m . Spectra taken at the beam energy of 270 MeV at channeling in the undulating (110) planes exhibit a broad excess yield around the theoretically expected photon energies of 0.069 MeV, as compared with a flat silicon reference crystal. Model calculations on the basis of synchrotron-like radiation emission from finite single arc elements, taking into account also coherence effects, su…

010302 applied physicsPhysicsNuclear and High Energy PhysicsPhotonSiliconchemistry.chemical_elementElectronUndulator01 natural sciencesSpectral lineCrystalchemistry0103 physical sciencesCathode rayPhysics::Accelerator PhysicsAtomic physicsNuclear Experiment010306 general physicsInstrumentationMicrotronNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Estimation of Photon Flux of the Oxygen Lyman-alpha Line Emitted from the W7-X Plasmas

2020

The low-Z impurities of the magnetic confined fusion plasmas can provide important information about the wall condition and plasma–wall interactions. In order to accomplish this aim, a special spectrometer called “C/O Monitor” was designed for the W7-X experiment. This system is dedicated to measure Lyman-α transitions of four low-Z impurities: carbon (3.4 nm), oxygen (1.9 nm), nitrogen (2.5 nm) and boron (4.9 nm). It is a high throughput and high time resolution spectrometer which allows to measure the line intensities evolution of indicated elements including information of the background (continuum). The designed spectrometer consists of two vacuum chambers positioned nearly horizontally…

010302 applied physicsPhysicsPhoton fluxGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyPlasma021001 nanoscience & nanotechnology01 natural sciencesOxygenchemistry0103 physical sciencesAtomic physics0210 nano-technologyLine (formation)
researchProduct

Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators

2019

[EN] The emergence of materials artificially designed to control the transmission of waves, generally called metamaterials, has been a hot topic in the field of acoustics for several years. The design of these metamaterials is usually carried out by overlapping different wave control mechanisms. An example of this trend is the so-called Locally Resonant Sonic Materials, being one of them the Phononic Crystals with a local resonant structure. These metamaterials are formed by sets of isolated resonators in such a way that the control of the waves is carried out by resonances and by the existence of Bragg bandgaps, which appear due to the ordered distribution of the resonators. Their use is b…

010302 applied physicsPhysicsPhysics and Astronomy (miscellaneous)Field (physics)AcousticsMetamaterialResonancePhysics::Optics02 engineering and technologyLow frequency021001 nanoscience & nanotechnology01 natural sciencesFinite element methodResonatorCoupling (physics)symbols.namesakeHelmhotz resonatorsHelmholtz free energyMetamaterialsFISICA APLICADA0103 physical sciencessymbols0210 nano-technology
researchProduct

Hydrogen plasma induced photoelectron emission from low work function cesium covered metal surfaces

2017

Experimental results of hydrogen plasma induced photoelectron emission from cesium covered metal surfaces under ion source relevant conditions are reported. The transient photoelectron current during the Cs deposition process is measured from Mo, Al, Cu, Ta, Y, Ni, and stainless steel (SAE 304) surfaces. The photoelectron emission is 2–3.5 times higher at optimal Cs layer thickness in comparison to the clean substrate material. Emission from the thick layer of Cs is found to be 60%–80% lower than the emission from clean substrates. peerReviewed

010302 applied physicsPhysicsta114HydrogenTantalumAnalytical chemistrytransitionchemistry.chemical_elementSubstrate (electronics)plasmasCondensed Matter Physics01 natural sciencesIon sourcework functions010305 fluids & plasmasion sourceschemistryAluminiumCaesium0103 physical sciencesWork functionLayer (electronics)photoemissionPhysics of Plasmas
researchProduct

Sub-nanosecond excitonic luminescence in ZnO:In nanocrystals

2019

The financial support of research European Union ERA.NET RUS_ST20170-51 . This work was partly supported by Russian Foundation for Basic Research, Russia , project No. 18-52-76002 . The sample preparation was carried out as part of SFERA II project -Transnational Access activities ( European Union 7th Framework Programme Grant Agreement N3126430 ).

010302 applied physicsRadiationMaterials scienceMorphology (linguistics)DopingKineticsAnalytical chemistrychemistry.chemical_elementTime-resolved luminescenceNanosecondVapour deposition01 natural sciences030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineNanocrystalchemistry0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]In [ZnO]Indium dopingLuminescenceInstrumentationScintillationIndium
researchProduct

Determination of impurity distributions in ingots of solar grade silicon by neutron activation analysis

2017

AbstractIn a series of crystallization experiments, the directional solidification of silicon was investigated as a low cost path for the production of silicon wafers for solar cells. Instrumental neutron activation analysis was employed to measure the influence of different crystallization parameters on the distribution of 3d-metal impurities of the produced ingots. A theoretical model describing the involved diffusion and segregation processes during the solidification and cooling of the ingots could be verified by the experimental results. By successive etching of the samples after the irradiation, it could be shown that a layer of at least 60 μm of the samples has to be removed to get r…

010302 applied physicsSiliconMetallurgychemistry.chemical_elementdirectional solidification02 engineering and technologysolar silicon021001 nanoscience & nanotechnology01 natural sciencesMaterialien - Solarzellen und TechnologieKristallisation und Waferingtransition metalsSilicium-PhotovoltaikchemistryImpurityPhotovoltaik0103 physical sciencesPhysical and Theoretical ChemistryNeutron activation analysis0210 nano-technologyfeedstockneutron activation analysis
researchProduct

Determination of elastoplastic properties of TiO2 thin films deposited on dual phase stainless steel using nanoindentation tests

2010

International audience; In recent years, the extraction of mechanical behaviour of thin films by nanoindentation using sharp indenter geometry has been extensively studied. This work investigates the mechanical properties of TiO2 thin film (1 µm thickness) deposited by spin coating on dual phase Duplex stainless steel and glass substrates. Experiments are carried out with different sharp triangular pyramids (a Cube corner and a Berkovich indenter) using a commercial Nano Indenter® XP apparatus. The substrate effect has been counteracted and an inverse method proposed in literature for bulk material has been adapted to assess the elastoplastic parameters of the tested thin film directly from…

010302 applied physicsSpin coatingMaterials scienceThin filmsMetallurgy02 engineering and technologySurfaces and InterfacesGeneral ChemistrySubstrate (electronics)Inverse methodNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesFinite element methodNanoindentationSurfaces Coatings and FilmsPhase (matter)0103 physical sciencesNano-Materials ChemistryThin film0210 nano-technologyFinite element modelingElastic modulus
researchProduct

Synthesis of Eu<sup>2+</sup> and Dy<sup>3+</sup> Doped Strontium Aluminates and their Properties

2016

Strontium aluminate phosphors were synthesized by the solution combustion method using citric acid, urea or glycine as reducing agent and europium and dysprosium as dopants. The content of both dopants was in the range of 1 – 2 mol%. Dependence of phase composition, crystallite size and specific surface area on calcinations temperature, used reducing agents and dopants were determined. Luminescent properties of the calcinated at 1300 °C powders contained SrAl2O4 (90 %) and Sr4Al24O25 (10%) phases with crystallite size of 80 nm were determined.

010302 applied physicsStrontiumMaterials scienceReducing agentMechanical EngineeringInorganic chemistryStrontium aluminatechemistry.chemical_elementPhosphor02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundchemistryMechanics of MaterialsSpecific surface area0103 physical sciencesDysprosiumGeneral Materials ScienceCrystallite0210 nano-technologyEuropiumKey Engineering Materials
researchProduct

Finite element analysis of stress concentration between surface coated implants and non surface coated implants - An in vitro study.

2019

Background To determine qualitative comparison in stress distribution between surface coated implants and non surface coated implants using 2 different lengths and vertical, oblique, and lateral forces. Material and Methods 3 dimensional finite element study was carried out at first molar site with 4 surface coated and 4 non surface coated implants using mimic 8.11, solid edge 2004, hypermesh 9.0, and ansys12.1 software. Results The pattern of stress distribution was almost similar between vertical and oblique loading but varied with lateral loads between surface coated and non surface coated implants. As the length of the implants increased stress concentration had no significant variation…

010302 applied physicsSurface (mathematics)Prosthetic DentistryMaterials scienceResearch02 engineering and technologyEdge (geometry)021001 nanoscience & nanotechnology01 natural sciencesFinite element methodStress (mechanics)Surface coatingUNESCO::CIENCIAS MÉDICAS0103 physical sciencesComposite material0210 nano-technologyGeneral DentistryAbutment (dentistry)Stress concentrationAbutment ScrewJournal of clinical and experimental dentistry
researchProduct