Search results for "EMISSION"
showing 10 items of 2441 documents
Long-term evolution of luminescent properties in CdI2 crystals
2016
Fresh and aged melt-grown or gas-phase grown CdI2 crystals are studied by means of low-temperature photoluminescence spectroscopy. Noticeable transformations of emission spectra are observed after long-term aging. The formation of nanostructures containing cadmium oxide and cadmium hydroxide as well as the changes in local surrounding of iodine atoms and the possible growth of polytypic modifications of CdI2 are taken into account when considering the diversity of optical spectra.
Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticl…
2019
Metal Halide Perovskites (MHPs) have arisen as promising materials to construct cost-effective photovoltaic and light emission devices. The study of nonlinear optical properties of MHPs is necessary to get similar success in nonlinear photonic devices, which is practically absent in the literature. The determination of the third order nonlinear coefficients is typically done by the Z-scan technique, which is limited by the scattering of polycrystalline thin films. In this work, we have studied nonlinear optical properties of polycrystalline CH3NH3PbX3 (MAPbX3) thin films and colloidal CsPbX3 nanoparticles with three different bandgaps (X3 = I3, Br3, and Br1.5I1.5). Their bright generation o…
Correlations between density distributions, optical spectra, and ion species in a hydrogen plasma (invited)
2016
An experimental study of plasma distributions in a 2.45 GHz hydrogen discharge operated at 100 Hz repetition rate is presented. Ultrafast photography, time integrated visible light emission spectra, time resolved Balmer-alpha emission, time resolved Fulcher Band emission, ion species mass spectra, and time resolved ion species fraction measurements have been implemented as diagnostic tools in a broad range of plasma conditions. Results of plasma distributions and optical emissions correlated with H + , H + 2 , and H + 3 ion currents by using a Wien filter system with optical observation capability are reported. The magnetic field distribution and strength is found as the most critical facto…
Spectroscopic study of ion temperature in minimum-B ECRIS plasma
2019
Experimentally determined ion temperatures of different charge states and elements in minimum-B confined electron cyclotron resonance ion source (ECRIS) plasma are reported. It is demonstrated with optical emission spectroscopy, complemented by the energy spread measurements of the extracted ion beams, that the ion temperature in the JYFL 14 GHz ECRIS is 5–28 eV depending on the plasma species and charge state. The reported ion temperatures are an order of magnitude higher than previously deduced from indirect diagnostics and used in simulations, but agree with those reported for a quadrupole mirror fusion experiment. The diagnostics setup and data interpretation are discussed in detail to …
Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source
2015
Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed
Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models
2018
[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.
Study of the thermochromic phase transition in CuMo1−xWxO4 solid solutions at the W L3-edge by resonant X-ray emission spectroscopy
2021
Abstract Polycrystalline CuMo 1 − x W x O 4 solid solutions were studied by resonant X-ray emission spectroscopy (RXES) at the W L 3 -edge to follow a variation of the tungsten local atomic and electronic structures across thermochromic phase transition as a function of sample composition and temperature. The experimental results were interpreted using ab initio calculations. The crystal-field splitting parameter Δ for the 5d(W)-states was obtained from the analysis of the RXES plane and was used to evaluate the coordination of tungsten atoms. Temperature-dependent RXES measurements were successfully employed to determine the hysteretic behaviour of the structural phase transition between t…
Compact setup for spin-, time-, and angle-resolved photoemission spectroscopy.
2020
Review of scientific instruments 91(6), 063001 (2020). doi:10.1063/5.0004861
The ${JV}$ -Characteristic of Intermediate Band Solar Cells With Overlapping Absorption Coefficients
2017
An analytic expression for the $\textit {JV}$ -characteristic of intermediate band (IB) solar cells with overlapping absorption coefficients is derived. The characteristic contains six voltage-independent parameters that are calculated from material properties, cell properties, and external conditions. Combined with exponential functions containing the cell voltage, these describe the full $\textit {JV}$ -characteristic. Expressions are also derived for the short-circuit current and open-circuit voltage. The model represents a major simplification compared with the existing model for this type of devices. The simplicity will facilitate the understanding of the operation of such cells. Furth…
Hydrogen plasma induced photoelectron emission from low work function cesium covered metal surfaces
2017
Experimental results of hydrogen plasma induced photoelectron emission from cesium covered metal surfaces under ion source relevant conditions are reported. The transient photoelectron current during the Cs deposition process is measured from Mo, Al, Cu, Ta, Y, Ni, and stainless steel (SAE 304) surfaces. The photoelectron emission is 2–3.5 times higher at optimal Cs layer thickness in comparison to the clean substrate material. Emission from the thick layer of Cs is found to be 60%–80% lower than the emission from clean substrates. peerReviewed