Search results for "Editing"

showing 10 items of 94 documents

The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated cha…

2019

The recent progress in genetic engineering has brought multiple benefits to the food and agricultural industry by enhancing the essential characteristics of agronomic traits. Powerful tools in the field of genome editing, such as siRNA-mediated RNA interference for targeted suppression of gene expression and transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) for DNA repair have been widely used for commercial purposes. However, in the last few years, the discovery of the CRISPR-Cas9 system has revolutionized genome editing and has attracted attention as a powerful tool for several industrial applications. Herein, we review current progresses in the uti…

0106 biological sciencesCrops AgriculturalComputer scienceBioengineeringComputational biology01 natural sciencesApplied Microbiology and Biotechnology03 medical and health sciencesGenome editingRNA interference010608 biotechnologyTranscription Activator-Like Effector NucleasesCRISPRFood IndustryHumans030304 developmental biologyGene Editing0303 health sciencesTranscription activator-like effector nucleasebusiness.industryPlants Genetically ModifiedZinc finger nucleaseZinc Finger NucleasesAgricultureGene TargetingEthical concernsCRISPR-Cas SystemsbusinessGenetic EngineeringBiotechnologyBiotechnology advances
researchProduct

Next-generation biological control

2020

Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Nex…

0106 biological sciencesProteomicsH10 Pests of plantsInternationalityComputer science[SDV]Life Sciences [q-bio]Laboratory of VirologySequence assemblybiological controlmicrobiome01 natural sciencesGenome editinggeneticsNagoya ProtocolLaboratory of EntomologyCYTOPLASMIC INCOMPATIBILITY2. Zero hunger0303 health sciencesQUANTITATIVE TRAIT LOCICommercefood and beveragesCONTROL AGENTSPE&RCBiosystematiekNASONIA-VITRIPENNISGUT CONTENT-ANALYSIS[SDE]Environmental SciencesTraitinsect breedingAXYRIDIS COLEOPTERA-COCCINELLIDAEOriginal ArticleLaboratory of GeneticsLIFE-HISTORY TRAITSGeneral Agricultural and Biological SciencesGenomicsContext (language use)Computational biology[SDV.BID]Life Sciences [q-bio]/Biodiversityartificial selectionQuantitative trait locusAnimal Breeding and GenomicsLaboratorium voor Erfelijkheidsleer010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyLaboratorium voor Virologiemodelling03 medical and health sciencesgenomics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyFokkerij en GenomicaPARASITOID WASPSelection (genetic algorithm)modelling.030304 developmental biologySEX DETERMINATIONOriginal ArticlesLaboratorium voor EntomologieWIASgenome assemblyBiosystematicsEPSartificial selection biological control genetics genome assembly genomics insect breeding microbiome modellingBiological Reviews
researchProduct

Engineering CRISPR guide RNA riboswitches for in vivo applications

2019

CRISPR-based genome editing provides a simple and scalable toolbox for a variety of therapeutic and biotechnology applications. Whilst the fundamental properties of CRISPR proved easily transferable from the native prokaryotic hosts to eukaryotic and multicellular organisms, the tight control of the CRISPR-editing activity remains a major challenge. Here we summarise recent developments of CRISPR and riboswitch technologies and recommend novel functionalised synthetic-gRNA (sgRNA) designs to achieve inducible and spatiotemporal regulation of CRISPR-based genetic editors in response to cellular or extracellular stimuli. We believe that future advances of these tools will have major implicati…

0106 biological sciencesRiboswitchComputer scienceGenetic enhancementBiomedical EngineeringBioengineeringComputational biology01 natural sciences03 medical and health sciencesSynthetic biologyGenome editing010608 biotechnologyHumansCRISPRClustered Regularly Interspaced Short Palindromic RepeatsGuide RNAQH426030304 developmental biologyGene Editing0303 health sciencesReproducibility of ResultsRNAMulticellular organismRiboswitchGenetic EngineeringRNA Guide KinetoplastidaBiotechnologyCurrent Opinion in Biotechnology
researchProduct

Implications of the EFSA Scientific Opinion on Site Directed Nucleases 1 and 2 for Risk Assessment of Genome-Edited Plants in the EU

2021

Genome editing is a set of techniques for introducing targeted changes in genomes. It may be achieved by enzymes collectively called site-directed nucleases (SDN). Site-specificity of SDNs is provided either by the DNA binding domain of the protein molecule itself or by RNA molecule(s) that direct SDN to a specific site in the genome. In contrast to transgenesis resulting in the insertion of exogenous DNA, genome editing only affects specific endogenous sequences. Therefore, multiple jurisdictions around the world have exempted certain types of genome-edited organisms from national biosafety regulations completely, or on a case-by-case basis. In the EU, however, the ruling of the Court of J…

0106 biological sciencesSDN-2SDN-1Mutagenesis (molecular biology technique)Computational biology01 natural sciencesGenomegenome-edited organismlcsh:Agriculture03 medical and health sciencesBiosafetyGenome editingsite-directed nucleasegenetically modified organismJustice (ethics)EFSA opinion030304 developmental biology0303 health sciencesScope (project management)business.industrylcsh:SFood safetyDirectiveBusinessAgronomy and Crop Science010606 plant biology & botanyAgronomy
researchProduct

The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants

2011

International audience; Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Sela…

0106 biological sciencesSmall RNASELAGINELLA[SDV.BC]Life Sciences [q-bio]/Cellular Biology01 natural sciencesGenome03 medical and health sciencesSelaginella moellendorffiiSelaginellaGENETIQUE VEGETALEGeneInstitut für Biochemie und Biologie030304 developmental biologyGeneticsWhole genome sequencing0303 health sciencesMultidisciplinarybiologyfungiRNAfood and beverages15. Life on landbiology.organism_classificationSELAGINELLA MOELLENDORFFIIRNA editingLYCOPHYTE010606 plant biology & botany
researchProduct

Phosphorylation of CENP-A on serine 7 does not control centromere function.

2019

CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viab…

0301 basic medicine1.1 Normal biological development and functioningScience[SDV]Life Sciences [q-bio]CentromereGeneral Physics and Astronomy02 engineering and technology[SDV.BC]Life Sciences [q-bio]/Cellular Biologymacromolecular substancesBiologyGeneral Biochemistry Genetics and Molecular BiologyArticleSerineChromosome segregation03 medical and health sciencesHistone H3Underpinning researchCentromereGeneticsHumansViability assayPhosphorylationlcsh:ScienceComputingMilieux_MISCELLANEOUSCancerGene EditingMultidisciplinaryQGene targetingGeneral Chemistry021001 nanoscience & nanotechnologyCell biologySettore BIO/18 - Genetica030104 developmental biologyChromosome segragationHela CellsPhosphorylationEpigeneticslcsh:QGeneric health relevance0210 nano-technologyFunction (biology)Centromere Protein AHumanHeLa CellsNature communications
researchProduct

Anti-ageing gene therapy: Not so far away?

2019

Improving healthspan is the main objective of anti-ageing research. Currently, innovative gene therapy-based approaches seem to be among the most promising for preventing and treating chronic polygenic pathologies, including age-related ones. The gene-based therapy allows to modulate the genome architecture using both direct (e.g., by gene editing) and indirect (e.g., by viral or non-viral vectors) approaches. Nevertheless, considering the extraordinary complexity of processes involved in ageing and ageing-related diseases, the effectiveness of these therapeutic options is often unsatisfactory and limited by their side-effects. Thus, clinical implementation of such applications is certainly…

0301 basic medicineAgingviral vectorsComputer scienceProcess (engineering)Genetic enhancementBiochemistry03 medical and health sciences0302 clinical medicineGenome editingAnimalsHumansMolecular Biologyageing-related diseaseHealth spanGene Editingageing-related disease; anti-ageing medicine; gene editing; gene therapy; health span; viral vectorsGenetic TherapyAnti ageinghealth spangene therapyClinical Practice030104 developmental biologyNeurologyRisk analysis (engineering)anti-ageing medicine030217 neurology & neurosurgeryGenome architectureBiotechnologyAgeing research reviews
researchProduct

The organoid era permits the development of new applications to study glioblastoma

2020

Simple Summary Glioblastoma is the most lethal primary adult brain tumor. The great number of mutations involved and the aggressiveness of glioblastoma render this type of cancer especially difficult to investigate. To address this problem, cerebral organoids have emerged as promising tools to investigate brain biology and to recapitulates the major steps involved in glioblastoma tumorigenesis. This review focuses on methods of cerebral organoid development, describes the protocols used for inducing glioblastoma, the approach used to derive glioblastoma organoids directly from patients’ biopsies and discusses their limitations and potential future direction. Abstract Glioblastoma (GB) is th…

0301 basic medicineCancer ResearchTranslational researchContext (language use)ReviewStem cellsBiologylcsh:RC254-28203 medical and health sciences0302 clinical medicineGenome editingGliomaOrganoidmedicinePreclinical cancer modelsPrecision medicineCancerTranslational researchlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseasePrecision medicineBiobankOrganoids030104 developmental biologyTumoroidsOncologyGlioblastomaNeuroscience030217 neurology & neurosurgeryCancers
researchProduct

A Comparison of Techniques to Evaluate the Effectiveness of Genome Editing

2018

Genome editing using engineered nucleases (meganucleases, zinc finger nucleases, transcription activator-like effector nucleases) has created many recent breakthroughs. Prescreening for efficiency and specificity is a critical step prior to using any newly designed genome editing tool for experimental purposes. The current standard screening methods of evaluation are based on DNA sequencing or use mismatch-sensitive endonucleases. They can be time-consuming and costly or lack reproducibility. Here, we review and critically compare standard techniques with those more recently developed in terms of reliability, time, cost, and ease of use.

0301 basic medicineDNA End-Joining Repair[SDV.BIO]Life Sciences [q-bio]/BiotechnologyBioengineeringComputational biologyBiologyDNA sequencing03 medical and health sciencesGenome editingScreening methodAnimalsHumansDNA Breaks Double-StrandedHomologous RecombinationComputingMilieux_MISCELLANEOUSGeneticsGene EditingHigh-Throughput Nucleotide SequencingPlantsEndonucleasesZinc finger nuclease030104 developmental biologyCRISPR-Cas SystemsGenetic EngineeringBiotechnologyRNA Guide Kinetoplastida
researchProduct

Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7

2020

This article belongs to the Section Bacterial Viruses.

0301 basic medicineGenetic Markersviruses030106 microbiologyMutantlcsh:QR1-502t7Computational biologyGenome ViralBiologyGenomeArticlelcsh:MicrobiologyBacteriophage03 medical and health sciencesbacteriophageVirologyBacteriophage T7CRISPRClustered Regularly Interspaced Short Palindromic RepeatsGenomescrisprBacteriophageGeneSelection (genetic algorithm)Gene EditingQHT7Viral Tail Proteinsbiology.organism_classificationBacteriòfags3. Good healthQRtail fibres030104 developmental biologyInfectious DiseasesLytic cycleCRISPRMutationTail fibresCRISPR-Cas SystemsHomologous recombinationGenèticaViruses
researchProduct