Search results for "Eigenvalue"
showing 10 items of 344 documents
Pseudo-bosons and Riesz Bi-coherent States
2016
After a brief review on D-pseudo-bosons we introduce what we call Riesz bi-coherent states, which are pairs of states sharing with ordinary coherent states most of their features. In particular, they produce a resolution of the identity and they are eigenstates of two different annihilation operators which obey pseudo-bosonic commutation rules.
Three-mode two-boson Jaynes–Cummings model in trapped ions
2006
In this paper, we analyse a two-boson three-mode Jaynes–Cummings model which can be implemented in the context of trapped ions. The symmetries of the Hamiltonian are brought to light and analysed in detail in order to solve the eigenvalue problem. The calculation of the time evolution operator shows the possibility of realizing interesting applications, such as the generation of nonclassical states.
On the hyperbolicity of certain models of polydisperse sedimentation
2012
The sedimentation of a polydisperse suspension of small spherical particles dispersed in a viscous fluid, where particles belong to N species differing in size, can be described by a strongly coupled system of N scalar, nonlinear first-order conservation laws for the evolution of the volume fractions. The hyperbolicity of this system is a property of theoretical importance because it limits the range of validity of the model and is of practical interest for the implementation of numerical methods. The present work, which extends the results of R. Burger, R. Donat, P. Mulet, and C.A. Vega (SIAM Journal on Applied Mathematics 2010; 70:2186–2213), is focused on the fluxes corresponding to the …
Dynamic analysis for axially moving viscoelastic panels
2012
In this study, stability and dynamic behaviour of axially moving viscoelastic panels are investigated with the help of the classical modal analysis. We use the flat panel theory combined with the Kelvin–Voigt viscoelastic constitutive model, and we include the material derivative in the viscoelastic relations. Complex eigenvalues for the moving viscoelastic panel are studied with respect to the panel velocity, and the corresponding eigenfunctions are found using central finite differences. The governing equation for the transverse displacement of the panel is of fifth order in space, and thus five boundary conditions are set for the problem. The fifth condition is derived and set at the in-…
A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic Equations With Gradient Dependence
2016
The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.
On the numerical solution of some finite-dimensional bifurcation problems
1981
We consider numerical methods for solving finite-dimensional bifurcation problems. This paper includes the case of branching from the trivial solution at simple and multiple eigenvalues and perturbed bifurcation at simple eigenvalues. As a numerical example we treat a special rod buckling problem, where the boundary value problem is discretized by the shooting method.
On Boundary Conditions for Wedge Operators on Radial Sets
2008
We present a theorem about calculation of fixed point index for k-$\psi$-contractive operators with 0 < k <1 defined on a radial set of a wedge of an infinite dimensional Banach space. Then results on the existence of eigenvectors and nonzero fixed points are obtained.
A quantitative reverse Faber-Krahn inequality for the first Robin eigenvalue with negative boundary parameter
2021
The aim of this paper is to prove a quantitative form of a reverse Faber-Krahn type inequality for the first Robin Laplacian eigenvalueλβwith negative boundary parameter among convex sets of prescribed perimeter. In that framework, the ball is the only maximizer forλβand the distance from the optimal set is considered in terms of Hausdorff distance. The key point of our stategy is to prove a quantitative reverse Faber-Krahn inequality for the first eigenvalue of a Steklov-type problem related to the original Robin problem.
An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit
2010
We prove an upper bound for the first Dirichlet eigenvalue of the p-Laplacian operator on convex domains. The result implies a sharp inequality where, for any convex set, the Faber-Krahn deficit is dominated by the isoperimetric deficit.
Evolution of Worldwide Stock Markets, Correlation Structure and Correlation Based Graphs
2011
We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period Jan 1996 - Jul 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term timescale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the non diagonal elements of the correlation matrix, corre…