Search results for "Electric Conductivity"
showing 10 items of 82 documents
Size-selective incorporation of DNA nanocages into nanoporous antimony-doped tin oxide materials.
2011
A conductive nanoporous antimony-doped tin oxide (ATO) powder has been prepared using the sol-gel method that contains three-dimensionally interconnected pores within the metal oxide and highly tunable pore sizes on the nanoscale. It is demonstrated that these porous materials possess the capability of hosting a tetrahedral-shaped DNA nanostructure of defined dimensions with high affinity. The tunability of pore size enables the porous substrate to selectively absorb the DNA nanostructures into the metal oxide cavities or exclude them from entering the surface layer. Both confocal fluorescence microscopy and solution FRET experiments revealed that the DNA nanostructures maintained their int…
Arginine-rich peptides are blockers of VR-1 channels with analgesic activity
2000
Vanilloid receptors (VRs) play a fundamental role in the transduction of peripheral tissue injury and/or inflammation responses. Molecules that antagonize VR channel activity may act as selective and potent analgesics. We report that synthetic arginine-rich hexapeptides block heterologously expressed VR-1 channels with submicromolar efficacy in a weak voltage-dependent manner, consistent with a binding site located near/at the entryway of the aqueous pore. Dynorphins, natural arginine-rich peptides, also blocked VR-1 activity with micromolar affinity. Notably, synthetic and natural arginine-rich peptides attenuated the ocular irritation produced by topical capsaicin application onto the eye…
Oscillatory Changes of the Heterogeneous Reactive Layer Detected with the Motional Resistance during the Galvanostatic Deposition of Copper in Sulfur…
2015
Metallic copper was galvanostatically deposited on quartz|gold resonant electrodes by applying a constant current in a 0.5 M CuSO4/0.1 M H2SO4 aqueous solution. Galvanostatic copper deposition is one of the best methodologies to calibrate the electrochemical quartz crystal microbalances (EQCM), a gravimetric sensor to evaluate changes in mass during the electrochemical reactions through the Sauerbrey equation. The simultaneous measurement of mass, current density, and motional resistance by an EQCM with motional resistance monitoring allows us to characterize the processes occurring on the electrode surface and at the interfacial regions with unprecedented detail. During the galvanostatic c…
Spin qubits with electrically gated polyoxometalate molecules
2007
Spin qubits offer one of the most promising routes to the implementation of quantum computers. Very recent results in semiconductor quantum dots show that electrically-controlled gating schemes are particularly well-suited for the realization of a universal set of quantum logical gates. Scalability to a larger number of qubits, however, remains an issue for such semiconductor quantum dots. In contrast, a chemical bottom-up approach allows one to produce identical units in which localized spins represent the qubits. Molecular magnetism has produced a wide range of systems with tailored properties, but molecules permitting electrical gating have been lacking. Here we propose to use the polyox…
Following ionic activity by electrochemistry during the polymerase chain reaction
2009
The most commonly used technique for gene detection is the polymerase chain reaction (PCR). PCR is associated with alterations in ionic activity because inorganic pyrophosphate (PPi) and inorganic phosphate (Pi) ions are produced during nucleotide polymerization. To maintain electro-neutrality, magnesium, potassium, and ammonium ions are bound to DNA. Deoxynucleotides are also bound to DNA during PCR. Some authors have described DNA itself as an electrically conducting polymer formed by base stapling with the formation of extensive Pi systems. In the current study, alterations in electrical conductivity determined experimentally during PCR are reported, and a model explaining the observed c…
Effect of storage period under variable conditions on the chemical and physical composition and colour of Spanish refrigerated orange juices
2005
The effects of the physicochemical and quality characteristics of various minimally pasteurized refrigerated orange Spanish juices and their changes with storage time and temperature were investigated. Essential oils, acidity, conductivity, diacetyl index, hydroxymethylfurfural, formol index, viscosity and ascorbic acid varied with storage time more significantly at 10 degrees C than at 4 degrees C. Density, colour and pectinmethylesterase did not vary at 4 degrees C. Some of the parameters could be used as indicators of quality loss or spoilage of the juices. The degradation kinetics of the concentration of remaining ascorbic acid against time follows a straight line whose slope indicates …
The short-circuited everted sac of rat colon mucosa.
1981
A short-circuited preparation of everted rat colon sacs is described. The serosal current electrode is a AgAgCl wire. A cylindrical agar bridge or AgAgCl electrode may be employed on the mucosal side. Effects of Ag+ ions liberated from the electrodes on ion transport could not be demonstrated. Fluid and sodium are absorbed and bicarbonate secreted. Potassium and chloride movements are not significantly different from zero. The preparation remains stable for at least 2 h. Sodium absorption is diminished by 50% and bicarbonate secretion abolished in the absence of glucose. In principle, similar ion transport properties were found as in Ussing-chamber preparations. The advantage of the everted…
High‐temperature behavior of impurities and dimensionality of the charge transport in unintentionally and tin‐doped indium selenide
1993
A systematic study of the electron transport and shallow impurity distribution in indium selenide above room temperature or after an annealing process is reported by means of far‐infrared‐absorption and Hall‐effect measurements. Evidences are found for the existence of a large concentration of deep levels (1012–1013 cm−2), related to impurities adsorbed to stacking faults in this material. Above room temperature impurities can migrate from those defect zones and then become shallow in the bulk. The subsequent large increase of 3D electrons can change the dimensionality of the electron transport, which in most cases was 2D. The temperature dependence of the resistivity parallel to the c axis…
Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet
2008
Thin film transistors based on polyarylamine poly?N,N?-diphenyl-N,N ?bis?4-hexylphenyl?- ?1,1?biphenyl?-4,4?-diamine ?pTPD? were fabricated using spin coating in order to measure the mobility of pTPD upon oxidation. Partially oxidized pTPD with a molecular magnetic cluster showed an increase in mobility of over two orders of magnitude. A transition in the mobility of pTPD upon doping could also be observed by the presence of a maximum obtained for a given oxidant ratio and subsequent decrease for a higher ratio. Such result agrees well with a previously reported model based on the combined effect of dipolar broadening of the density of states and transport manifold filling. Peer Reviewed
Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide
2015
DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thi…