Search results for "Escherichia-Coli"

showing 10 items of 31 documents

Yersiniaspp. in Wild Rodents and Shrews in Finland

2017

Yersinia enterocolitica and Yersinia pseudotuberculosis are important zoonotic bacteria causing human enteric yersiniosis commonly reported in Europe. All Y. pseudotuberculosis strains are considered pathogenic, while Y. enterocolitica include both pathogenic and nonpathogenic strains which can be divided into six biotypes (1A, 1B, and 2-5) and about 30 serotypes. The most common types causing yersiniosis in Europe are Y. enterocolitica bioserotypes 4/O:3 and 2/O:9. Strains belonging to biotype 1A are considered as nonpathogenic because they are missing important virulence genes like the attachment-invasion-locus (ail) gene in the chromosome and the virulence plasmid. The role of wild small…

0301 basic medicineSerotypeAIL GENEYersinia InfectionsOUTBREAKField vole030106 microbiologyVirulenceAnimals WildRodentiaYersinia413 Veterinary scienceMicrobiologyMicrobiologyRodent DiseasesYersinia kristensenii03 medical and health sciencesSpecies SpecificityVirologyINFECTIONmedicinewild small mammalsAnimalsYersinia pseudotuberculosisYersinia enterocoliticata413FinlandbiologyPSEUDOTUBERCULOSISSTRAINSShrewsta1183YersiniosisSALMONELLAbiology.organism_classificationmedicine.diseaseENVIRONMENTAL-SAMPLESVirology3142 Public health care science environmental and occupational healthYersiniazoonosesCARROTS030104 developmental biologyInfectious DiseasesENTEROCOLITICAESCHERICHIA-COLIta1181isolationVector-Borne and Zoonotic Diseases
researchProduct

The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bact…

2015

ABSTRACT Oenococcus oeni is a wine-associated lactic acid bacterium mostly responsible for malolactic fermentation in wine. In wine, O. oeni grows in an environment hostile to bacterial growth (low pH, low temperature, and ethanol) that induces stress response mechanisms. To survive, O. oeni is known to set up transitional stress response mechanisms through the synthesis of heat stress proteins (HSPs) encoded by the hsp genes, notably a unique small HSP named Lo18. Despite the availability of the genome sequence, characterization of O. oeni genes is limited, and little is known about the in vivo role of Lo18. Due to the lack of genetic tools for O. oeni , an efficient expression vector in O…

0301 basic medicine[SDV.BIO]Life Sciences [q-bio]/Biotechnology[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition030106 microbiologyLactobacillus-plantarumWineEscherichia-coliApplied Microbiology and Biotechnologymolecular characterization03 medical and health sciencesGrowth-phaseBacterial ProteinsMembrane stabilizationHeat shock protein[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Antisense TechnologyGene expression[SDV.IDA]Life Sciences [q-bio]/Food engineeringMalolactic fermentationEnvironmental MicrobiologyRNA AntisenseGene-expressionLactic AcidHeat-Shock ProteinsOenococcusOenococcus oeniLeuconostoc-oenosEcologybiologyEthanolLactococcus lactisMalolactic fermentation[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyGene Expression Regulation Bacterialbiology.organism_classification[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyAntisense RNABiochemistryLactococcus-lactisHeat-shock-proteinFermentationOenococcusFood ScienceBiotechnology
researchProduct

Reactivity of anticancer metallodrugs with serum proteins: New insights from size exclusion chromatography-ICP-MS and ESI-MS

2010

International audience; A method based on the coupling of high resolution size-exclusion liquid chromatography using a polymer stationary phase with inductively coupled plasma mass spectrometry was developed to study the interactions of two metallodrugs - cisplatin and RAPTA-T - with the serum proteins albumin and transferrin. In contrast to previous approaches, the technique allowed the total recovery of the metals from the column and was able to discriminate between the different species of the metallodrugs and their complexes with the proteins at femtomolar detection levels. Metal binding was found to be dependent on the protein concentration and on the incubation time of the sample. Cis…

Binding-SitesElectrospray ionizationSize-exclusion chromatographyPeptidePlasma-Mass Spectrometry010402 general chemistry01 natural sciencesArticleAnalytical ChemistryOrganometallic Ruthenium CompoundCapillary electrophoresisComplexes[CHIM.ANAL]Chemical Sciences/Analytical chemistry[CHIM]Chemical SciencesInductively coupled plasma mass spectrometrySpectroscopychemistry.chemical_classificationChromatographyChemistry010401 analytical chemistryCisplatin BindingTransferrinAlbuminCapillary-ElectrophoresisMultidimensional Liquid-ChromatographyBlood proteins0104 chemical sciencesTransferrinPlatinum Antitumor ChemistryEscherichia-Coli
researchProduct

Biogenic amines in fermented foods

2010

Food-fermenting lactic acid bacteria (LAB) are generally considered to be non-toxic and non-pathogenic. Some species of LAB, however, can produce biogenic amines (BAs). BAs are organic, basic, nitrogenous compounds, mainly formed through decarboxylation of amino acids. BAs are present in a wide range of foods, including dairy products, and can occasionally accumulate in high concentrations. The consumption of food containing large amounts of these amines can have toxicological consequences. Although there is no specific legislation regarding BA content in many fermented products, it is generally assumed that they should not be allowed to accumulate. The ability of microorganisms to decarbox…

Biogenic AminesDecarboxylationMedicine (miscellaneous)Food ContaminationWineBiologyLACTIC-ACID BACTERIADecarboxylationRisk AssessmentOENOCOCCUS-OENI03 medical and health scienceschemistry.chemical_compoundBiogenic amine[SDV.IDA]Life Sciences [q-bio]/Food engineeringFood microbiology[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringWINESfood fermentationLACTOCOCCUS-LACTISFermentation in food processing030304 developmental biology2. Zero hungerchemistry.chemical_classification0303 health sciencesNutrition and DieteticsTYROSINE DECARBOXYLASELACTOBACILLUS-BREVIS030306 microbiologyLactobacillus brevistoxicological effectsHISTAMINE-PRODUCING BACTERIAacid stressfood and beveragesbiology.organism_classificationLactic acidAmino acidlactic acid bacteriachemistryBiochemistryTYRAMINE PRODUCTIONESCHERICHIA-COLILactobacillaceaeFermentationFood MicrobiologyFermentationDairy ProductsMULTIPLEX PCR
researchProduct

Evolution of the leucine gene cluster in Buchnera aphidicola: insights from chromosomal versions of the cluster.

2004

ABSTRACT In Buchnera aphidicola strains associated with the aphid subfamilies Thelaxinae, Lachninae, Pterocommatinae, and Aphidinae, the four leucine genes ( leuA , - B , - C , and - D ) are located on a plasmid. However, these genes are located on the main chromosome in B. aphidicola strains associated with the subfamilies Pemphiginae and Chaitophorinae. The sequence of the chromosomal fragment containing the leucine cluster and flanking genes has different positions in the chromosome in B. aphidicola strains associated with three tribes of the subfamily Pemphiginae and one tribe of the subfamily Chaitophorinae. Due to the extreme gene order conservation of the B. aphidicola genomes, the v…

ChaitophorinaeSubfamilygenome sequenceGenetics and Molecular BiologyMicrobiologyGenomemolecular characterizationsymbiotic bacteriaPlasmidschizaphis-graminumBuchneraLeucinemitochondrial-dnaplasmidGene clusterMolecular BiologyGeneHeat-Shock ProteinsPhylogenyGeneticsRecombination GeneticBinding SitesbiologyEscherichia coli ProteinsChromosomeChromosomes Bacterialbiology.organism_classificationPRI Bioscienceaphidsendosymbiotic bacteriaMultigene Familyescherichia-coliBuchneraanthranilate synthase trpegPlasmidsJournal of bacteriology
researchProduct

Alkane oxidation by a carboxylate-bridged dimanganese(III) complex

2001

[EN] A new manganese( III) oxamato dimer possesing an unprecedented Mn-2(mu -O2CR)(mu -OH2. . .O2CR) core has been synthesised, structurally and magnetically characterised, and used as a catalyst for the oxidation of alkanes to alcohols and ketones by (BuO2H)-O-t and O-2 in CH2Cl2 at rt.

Crystal-structuresUNESCO::QUÍMICA:QUÍMICA::Química orgánica [UNESCO]Escherichia-coliKetones:QUÍMICA [UNESCO]Manganese oxamatoDimerCarboxylate-bridged dimanganese complexFISICA APLICADAOxidationAlkanesManganese(iii)UNESCO::QUÍMICA::Química orgánicaCoreOxidation ; Carboxylate-bridged dimanganese complex ; Manganese oxamato ; Alkanes ; KetonesRibonucleotide reductaseMagnetic-properties
researchProduct

Identification of Critical Genes for Growth in Olive Brine by Transposon Mutagenesis of Lactobacillus pentosus C11

2013

ABSTRACT Olive brine represents a stressful environment due to the high NaCl concentration, presence of phenolic compounds known as antimicrobials, and low availability of nutrients. Thus, only a few strains of lactic acid bacteria (LAB) are adapted to grow in and ferment table olives. To identify the mechanisms by which these few strains are able to grow in olive brine, Lactobacillus pentosus C11, a particularly resistant strain isolated from naturally fermented table olives, was mutagenized by random transposition using the P junc -TpaseIS 1223 system (H. Licandro-Seraut, S. Brinster, M. van de Guchte, H. Scornec, E. Maguin, P. Sansonetti, J. F. Cavin, and P. Serror, Appl. Environ. Microb…

DNA Bacterial[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesPROTEIN EXPRESSIONMutantGREEN OLIVESGenetics and Molecular BiologyLactobacillus pentosusSodium ChlorideBINDING PROTEINmedicine.disease_causeApplied Microbiology and BiotechnologyMicrobiology03 medical and health scienceschemistry.chemical_compoundBriningOleaLACTIC-ACBACTERIAmedicineSTRESS-RESPONSE[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesEscherichia coliGene Library030304 developmental biology2. Zero hunger0303 health sciencesEcologybiologyReverse Transcriptase Polymerase Chain ReactionSTARTER CULTURE030306 microbiologyPHENOLIC-COMPOUNDSbiology.organism_classificationLactic acidLactobacilluschemistryMutagenesisTABLE OLIVESESCHERICHIA-COLIFermentationDNA Transposable ElementsFood MicrobiologySaltsFermentationTransposon mutagenesisPLANTARUM LPCO10Multiplex Polymerase Chain ReactionBacteriaFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Antimicrobial Lessons From a Large Observational Cohort on Intra-abdominal Infections in Intensive Care Units

2021

Severe intra-abdominal infection commonly requires intensive care. Mortality is high and is mainly determined by disease-specific characteristics, i.e. setting of infection onset, anatomical barrier disruption, and severity of disease expression. Recent observations revealed that antimicrobial resistance appears equally common in community-acquired and late-onset hospital-acquired infection. This challenges basic principles in anti-infective therapy guidelines, including the paradigm that pathogens involved in community-acquired infection are covered by standard empiric antimicrobial regimens, and second, the concept of nosocomial acquisition as the main driver for resistance involvement. I…

Drug Resistancemedicine.disease_causeSeverity of Illness Indexlaw.invention0302 clinical medicineENTEROBACTERIACEAElawDrug Resistance Multiple BacterialMedicine and Health SciencesPharmacology (medical)Cross InfectionbiologyBacterialAntimicrobialIntensive care unitAnti-Bacterial AgentsCommunity-Acquired InfectionsEuropeIntensive Care UnitsAnti-Bacterial Agents; Community-Acquired Infections; Critical Illness; Cross Infection; Europe; Humans; Intensive Care Units; Intraabdominal Infections; Microbial Sensitivity Tests; Peritonitis; Sepsis; Severity of Illness Index; Drug Resistance Multiple BacterialESCHERICHIA-COLI030220 oncology & carcinogenesisKLEBSIELLA-PNEUMONIAEBLOOD-STREAM INFECTIONSPYELONEPHRITISMultiplemedicine.medical_specialtyCritical IllnessMicrobial Sensitivity TestsPeritonitisEnterococcus faecalisNO03 medical and health sciencesIntra‑abdominal InfectionsAntibiotic resistanceFOODSepsisIntensive careInternal medicinemedicineHumansFLUOROQUINOLONE RESISTANCEPseudomonas aeruginosabusiness.industrySeptic shockMORTALITYbiology.organism_classificationmedicine.diseaseRISK-FACTORSIntraabdominal Infectionsbusiness030217 neurology & neurosurgeryEnterococcus faecium
researchProduct

Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioco…

2017

Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity. P. corrugata produces many biomolecules which play an important role in bacterial cell survival and fitness. Both species produce different medium-chain-length PHAs (mcl-PHAs) from the bioconversion of glycerol to a transparent film in P. mediterranea and a sticky elastomer in P. corrugata. In this work, using RNA-seq we investigated the transcriptional profiles of both bacteria at the early stationary growth phase with glycerol as the carbon sou…

EXPRESSION0301 basic medicineGlycerolAlginatesBioconversionPseudomonas mediterraneaPlant DiseasePOLYHYDROXYALKANOATESBioengineeringPolyhydroxyalkanoatePseudomonaTRANSACYLASEBacterial cell structureMicrobiologyTranscriptome03 medical and health sciencesPseudomonasDEPOLYMERASEMolecular BiologyDE-NOVO BIOSYNTHESISSoil MicrobiologyPlant DiseasesbiologyBase SequenceGene Expression ProfilingPseudomonasAlginatePolysaccharides BacterialSettore AGR/12 - Patologia VegetaleGeneral MedicineBiosynthetic PathwayGene Expression Regulation Bacterialbiology.organism_classificationBiosynthetic PathwaysDE-NOVO BIOSYNTHESIS ESCHERICHIA-COLI ALGINATE PRODUCTION PUTIDA KT2442 POLYHYDROXYALKANOATES TOMATO LIPODEPSIPEPTIDE TRANSACYLASE DEPOLYMERASE EXPRESSIONALGINATE PRODUCTIONLIPODEPSIPEPTIDEPseudomonas corrugataMetabolic pathwayRNA Bacterial030104 developmental biologyBiochemistryESCHERICHIA-COLIPUTIDA KT2442TOMATOBacteriaBiotechnology
researchProduct

Mechanism of the Citrate Transporters in Carbohydrate and Citrate Cometabolism in Lactococcus and Leuconostoc Species

1998

ABSTRACT Citrate metabolism in the lactic acid bacterium Leuconostoc mesenteroides generates an electrochemical proton gradient across the membrane by a secondary mechanism (C. Marty-Teysset, C. Posthuma, J. S. Lolkema, P. Schmitt, C. Divies, and W. N. Konings, J. Bacteriol. 178:2178–2185, 1996). Reports on the energetics of citrate metabolism in the related organism Lactococcus lactis are contradictory, and this study was performed to clarify this issue. Cloning of the membrane potential-generating citrate transporter (CitP) of Leuconostoc mesenteroides revealed an amino acid sequence that is almost identical to the known sequence of the CitP of Lactococcus lactis . The cloned gene was exp…

EXPRESSIONLactococcusMolecular Sequence DataApplied Microbiology and BiotechnologyCitric AcidMicrobiologyACID BACTERIAchemistry.chemical_compoundBacterial ProteinsNUCLEOTIDE-SEQUENCELactococcusLeuconostocAmino Acid SequenceCloning MolecularElectrochemical gradientchemistry.chemical_classificationEcologybiologySymportersLACTATE EFFLUXLactococcus lactisfood and beveragesMETABOLIC ENERGYMembrane transportHydrogen-Ion Concentrationbiology.organism_classificationENERGY GENERATIONLACTIS BIOVAR DIACETYLACTISAmino acidchemistryBiochemistryLeuconostoc mesenteroidesESCHERICHIA-COLIFood MicrobiologyCarbohydrate MetabolismbacteriaKLEBSIELLA-PNEUMONIAECitric acidCarrier ProteinsLeuconostocFood ScienceBiotechnologyMEMBRANE-VESICLESApplied Environmental Microbiology
researchProduct