Search results for "FEMTOSECOND"

showing 10 items of 238 documents

Shaping the supercontinuum spectral profile

2009

We numerically recognize a procedure for shaping, at least to some extent, the spectral profile of the supercontinuum (SC) generated by soft-glass photonic crystal fibers (PCFs). As example, we identify a PCF geometry that provides an ultrawide (over an octave) and very flat SC when pumped with pulsed light parameters corresponding to a commercially available Er-doped femtosecond fiber laser.

Materials scienceOptical fiberbusiness.industryPhysics::OpticsNonlinear opticsFemtosecond fiber laserOctave (electronics)Supercontinuumlaw.inventionOptical pumpingOpticslawOptoelectronicsbusinessPhotonic crystalPhotonic-crystal fiber2009 11th International Conference on Transparent Optical Networks
researchProduct

Ultrafast spectroscopic investigation on fluorescent carbon nanodots: the role of passivation.

2019

Disentangling the respective roles of the surface and core structures in the photocycle of carbon nanodots is a critical open problem in carbon nanoscience. While the need of passivating carbon dot surfaces to obtain efficiently emitting nanoparticles is very well-known in the literature, it is unclear if passivation introduces entirely new surface emitting states, or if it stabilizes existing states making them fluorescent. In this multi-technique femtosecond spectroscopy study, the relaxation dynamics of non-luminescent (non-passivated) carbon dots are directly compared with their luminescent (passivated) counterparts. Non-passivated dots are found to host emissive states, albeit very sho…

Materials sciencePassivation530 PhysicsGeneral Physics and AstronomyNanoparticlechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences540 ChemistryPhysical and Theoretical ChemistrySurface statesbusiness.industry620 Engineering021001 nanoscience & nanotechnologyFluorescence0104 chemical scienceschemistryAtomic electron transitioncarbon dots ultrafast femtosecondOptoelectronics0210 nano-technologybusinessLuminescenceCarbonFemtochemistryPhysical chemistry chemical physics : PCCP
researchProduct

Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biologica…

2020

International audience; An ultrashort laser-assisted method for fast production of concentrated aqueous solutions of ultrapure Si-based colloidal nanoparticles is reported. The method profits from the 3D geometry of femtosecond laser ablation of water-dispersed microscale colloids, prepared preliminarily by the mechanical milling of a Si wafer, in order to avoid strong concentration gradients in the ablated material and provide similar conditions of nanocluster growth within a relatively large laser caustics volume. We demonstrate the possibility for the fast synthesis of non-aggregated, low-size-dispersed, crystalline Si-based nanoparticles, whose size and surface oxidation can be controll…

Materials sciencePhotoluminescenceAqueous solutionBiomedical EngineeringNanoparticleNanotechnology02 engineering and technologyGeneral ChemistryGeneral Medicine010402 general chemistry021001 nanoscience & nanotechnologyLaser01 natural sciences7. Clean energy0104 chemical sciencesNanomaterialslaw.inventionlawFemtosecond[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicGeneral Materials ScienceWafer0210 nano-technologyMicroscale chemistryJournal of Materials Chemistry B
researchProduct

Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses

2019

The influence of laser parameters on silica based waveguide inscription is investigated by using femtosecond laser pulses at 1030 nm (near-IR) and at 343 nm (UV). Negative phase contrast microscopy technique is used to measure the refractive index contrast for different photo-inscribed waveguides and shows the effects of both laser wavelength and scanning speed. In particular, UV photons have a higher efficiency in the waveguide production process as also confirmed by the lower optical losses at 1550 nm in these waveguides. These measurements are combined with micro-Raman and photoluminescence techniques, highlighting that laser exposure induces both structural modification of the silica an…

Materials sciencePhotoluminescenceLaser scanning02 engineering and technologyLaser waveguide inscriptionSilica glasse01 natural scienceslaw.invention010309 opticslaw0103 physical sciencesMicroscopyRefractive index contrastbusiness.industry021001 nanoscience & nanotechnologyLaserUltrashort laser pulseElectronic Optical and Magnetic Materialsphotoluminescence spectroscopyFemtosecondRaman spectroscopyOptoelectronics0210 nano-technologybusinessRefractive indexWaveguide
researchProduct

Spatial Distribution of the Nonlinear Photoluminescence in Au Nanowires

2019

When gold nanowires are excited with a tightly focused femtosecond laser a distributed nonlinear photoluminescence (N-PL) develops throughout the entire structure. A complete spaced-resolved analysis of the spectral signature of the nanowire nonlinear response is carried out to understand the origin of the distributed nonlinear response. We discuss various mechanisms to explain the experimental data and unambiguously demonstrate that the spatial and spectral extension of the N-PL in the nanowire are mainly dictated by the propagation of a surface plasmon excited at the pump wavelength. We also present experimental signature of near-field excitation of a broadband continuum of surface plasmo…

Materials sciencePhotoluminescenceSpectral signatureSurface plasmonNanowirePhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsSurface plasmon polaritonAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials010309 opticsExcited state[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesFemtosecondEmission spectrumElectrical and Electronic Engineering[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyComputingMilieux_MISCELLANEOUSBiotechnology
researchProduct

Synthesis of multi-color luminescent ZnO nanoparticles by ultra-short pulsed laser ablation

2020

Abstract Crystalline ZnO nanoparticles (NPs) are synthesized by ultra-short femtosecond (fs) pulsed laser ablation (PLA) of a zinc plate in deionized water, and are investigated by optical absorption and time resolved luminescence spectra in combination with the morphology and structure analysis. The comparison with previous experiments based on short nanosecond (ns) PLA highlights that pulse duration is a crucial parameter to determine the size and the optical properties of ZnO NPs. While short PLA generates NPs with average size S ‾ of ~ 30 nm, ultrashort PLA allows to achieve much smaller NPs, S ‾ ⩽ 10  nm, that evidence weak quantum confinement effects on both the absorption edge and th…

Materials sciencePhotoluminescenceUltrashort pulsed laser ablationZnO nanoparticlesExcitonGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesAtomic force microscopyAbsorption (electromagnetic radiation)Time resolved luminescencebusiness.industryQuantum confinement effectsSurfaces and InterfacesGeneral ChemistryNanosecond021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsAbsorption edgeQuantum dotFemtosecondOptoelectronics0210 nano-technologyLuminescencebusinessTransmission electron microscopyApplied Surface Science
researchProduct

Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure

2021

The nature of the radiation-induced point defects in amorphous silica is investigated through online photoluminescence (PL) under high intensity ultrashort laser pulses. Using 1030 nm femtosecond laser pulses with a repetition rate of 1 kHz, it is possible to study the induced color centers through their PL signatures monitored during the laser exposure. Their generation is driven by the nonlinear absorption of the light related to the high pulse peak powers provided by femtosecond laser, allowing to probe the optical properties of the laser exposed region. The experiment is conducted as a function of the laser pulse power in samples with different OH contents. The results highlight the dif…

Materials sciencePhotoluminescenceamorphous silicastructural modificationsSilicon dioxide02 engineering and technology01 natural scienceschemistry.chemical_compoundonline photoluminescence0103 physical sciencesMaterials Chemistrypoint defectsElectrical and Electronic Engineering010306 general physicsfemtosecond lasersComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]business.industrySettore FIS/01 - Fisica SperimentaleSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsCrystallographic defectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryFemtosecondOptoelectronicsLaser exposureAmorphous silica0210 nano-technologybusiness
researchProduct

Thickness-dependent electron momentum relaxation times in iron films

2020

Terahertz time-domain conductivity measurements in 2 to 100 nm thick iron films resolve the femtosecond time delay between applied electric fields and resulting currents. This current response time decreases from 29 fs for thickest films to 7 fs for the thinnest films. The macroscopic response time is not strictly proportional to the conductivity. This excludes the existence of a single relaxation time universal for all conduction electrons. We must assume a distribution of microscopic momentum relaxation times. The macroscopic response time depends on average and variation of this distribution; the observed deviation between response time and conductivity scaling corresponds to the scaling…

Materials sciencePhysics and Astronomy (miscellaneous)FOS: Physical sciences02 engineering and technologyElectronConductivity01 natural sciencesElectric field0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Scaling010302 applied physicsMomentum (technical analysis)Condensed Matter - Materials ScienceCondensed matter physics[PHYS.PHYS]Physics [physics]/Physics [physics]Condensed Matter - Mesoscale and Nanoscale PhysicsRelaxation (NMR)Materials Science (cond-mat.mtrl-sci)Physik (inkl. Astronomie)021001 nanoscience & nanotechnologyThermal conductionCondensed Matter - Other Condensed MatterFemtosecond0210 nano-technologyOther Condensed Matter (cond-mat.other)
researchProduct

Real-time monitoring of graphene patterning with wide-field four-wave mixing microscopy

2016

The single atom thick two-dimensional graphene is a promising material for various applications due to its extraordinary electronic, optical, optoelectronic, and mechanical properties. The demand for developing graphene based applications has entailed a requirement for development of methods for fast imaging techniques for graphene. Here, we demonstrate imaging of graphene with femtosecond wide-field four-wave mixing microscopy. The method provides a sensitive, non-destructive approach for rapid large area characterization of graphene. We show that the method is suitable for online following of a laser patterning process of microscale structures on single-layer graphene. peerReviewed

Materials sciencePhysics and Astronomy (miscellaneous)Nanotechnology02 engineering and technology01 natural scienceslaw.invention010309 opticsFour-wave mixinglawNondestructive testing0103 physical sciencesMicroscopygrafeenita116Mixing (physics)Microscale chemistryta114Graphenebusiness.industrygraphene021001 nanoscience & nanotechnologyCharacterization (materials science)four-wave mixing microscopyFemtosecond0210 nano-technologybusiness
researchProduct

Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator

2019

We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a comme…

Materials sciencePhysics and Astronomy (miscellaneous)Terahertz radiation02 engineering and technology01 natural sciences530law.inventionlawantenna-coupled spintronic terahertz emitterslaser oscillator0103 physical sciencesLaser power scaling010302 applied physicsSpintronicsbusiness.industryDynamic rangePhotoconductivityBandwidth (signal processing)500 Naturwissenschaften und Mathematik::530 Physik::530 Physik021001 nanoscience & nanotechnologyLaserFemtosecondOptoelectronicsterahertz emitters0210 nano-technologybusiness
researchProduct