Search results for "FLIP"
showing 10 items of 133 documents
Methodologies for the Statistical Analysis of Memory Response to Radiation
2016
International audience; Methodologies are proposed for in-depth statistical analysis of Single Event Upset data. The motivation for using these methodologies is to obtain precise information on the intrinsic defects and weaknesses of the tested devices, and to gain insight on their failure mechanisms, at no additional cost. The case study is a 65 nm SRAM irradiated with neutrons, protons and heavy ions. This publication is an extended version of a previous study.
Investigation on MCU Clustering Methodologies for Cross-Section Estimation of RAMs
2015
International audience; Various failure scenarios may occur during irradiation testing of SRAMs, which may generate different characteristic Multiple Cell Upset (MCU) error patterns. This work proposes a method based on spatial and temporal criteria to identify them.
Quantitative T 1 and proton density mapping with direct calculation of radiofrequency coil transmit and receive profiles from two-point variable flip…
2016
Quantitative T1 mapping of brain tissue is frequently based on the variable flip angle (VFA) method, acquiring spoiled gradient echo (GE) datasets at different excitation angles. However, accurate T1 calculation requires a knowledge of the sensitivity profile B1 of the radiofrequency (RF) transmit coil. For an additional derivation of proton density (PD) maps, the receive coil sensitivity profile (RP) must also be known. Mapping of B1 and RP increases the experiment duration, which may be critical when investigating patients. In this work, a method is presented for the direct calculation of B1 and RP from VFA data. Thus, quantitative maps of T1 , PD, B1 and RP can be obtained from only two …
Diffusive thermal dynamics for the spin-S Ising ferromagnet
2008
We introduce an alternative thermal diffusive dynamics for the spin-S Ising ferromagnet realized by means of a random walker. The latter hops across the sites of the lattice and flips the relevant spins according to a probability depending on both the local magnetic arrangement and the temperature. The random walker, intended to model a diffusing excitation, interacts with the lattice so that it is biased towards those sites where it can achieve an energy gain. In order to adapt our algorithm to systems made up of arbitrary spins, some non trivial generalizations are implied. In particular, we will apply the new dynamics to two-dimensional spin-1/2 and spin-1 systems analyzing their relaxat…
Observation of sequential spin flips in quantum rings
2011
We observe strong signatures of spin flips in quantum rings exposed to external magnetic fields in the Coulomb blockade regime. The signatures appear as a pattern of lines corresponding to local reduction of conductance, and they cover a large range of magnetic fields and number of electrons. The sequence of lines, as well as other features in the conductance, can be captured by many-electron calculations within density-functional theory. The calculations show that most lines in the pattern correspond to sequential spin flips between filling factors 2 and 1. We believe that the ability to probe individual spin flips provides an important step toward precise spin control in quantum ring devi…
A multicenter measurement of magnetization transfer ratio in normal white matter
1999
To assess the importance of intercenter variations when measuring magnetization transfer ratio (MTR) in the brain, six European centers measured MTR in normal white matter. MTR ranged from 9 to 51 percent units (25 sequences). The effective flip angle of the saturating pulse divided by the pulse repetition time (ENRsat degrees/msec) was a good predictor of MTR (MTR = 3.25 ENRsat).
Numerical relativity simulations of thick accretion disks around tilted Kerr black holes
2015
In this work we present 3D numerical relativity simulations of thick accretion disks around tilted Kerr BH. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered (0.044-0.16) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unst…
Influence of self-gravity on the runaway instability of black-hole-torus systems.
2010
Results from the first fully general relativistic numerical simulations in axisymmetry of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium are presented, aiming to assess the influence of the torus self-gravity on the onset of the runaway instability. We consider several models with varying torus-to-black hole mass ratio and angular momentum distribution orbiting in equilibrium around a non-rotating black hole. The tori are perturbed to induce the mass transfer towards the black hole. Our numerical simulations show that all models exhibit a persistent phase of axisymmetric oscillations around their equilibria for several dynamical timescales without the …
On the black hole from merging binary neutron stars: how fast can it spin?
2013
The merger of two neutron stars will in general lead to the formation of a torus surrounding a black hole whose rotational energy can be tapped to potentially power a short gamma-ray burst. We have studied the merger of equal-mass binaries with spins aligned with the orbital angular momentum to determine the maximum spin the black hole can reach. Our initial data consists of irrotational binaries to which we add various amounts of rotation to increase the total angular momentum. Although the initial data violates the constraint equations, the use of the constraint-damping CCZ4 formulation yields evolutions with violations smaller than those with irrotational initial data and standard formul…
SKYRME-RANDOM-PHASE-APPROXIMATION DESCRIPTION OF SPIN-FLIP AND ORBITAL M1 GIANT RESONANCES
2010
The self-consistent separable random-phase approximation (SRPA) with Skyrme forces is extended to the case of magnetic excitations and applied to the description of spin-flip and orbital M1 giant resonances in the isotopic chain 142-152 Nd . The Skyrme forces SkT6, SkM*, SLy6 and SkI3 are used. The calculations show an onset of the scissors mode with increasing deformation. A specific three-peak structure of the spin-flip response is found and explained by particular neutron and proton spin-flip transitions. Although the employed forces provide an acceptable qualitative description, the Skyrme functional still needs further improvement to reproduce quantitatively the experiment for spin mo…