Search results for "FORCE"

showing 10 items of 3423 documents

La “forza del diritto”: attori, retoriche e campi sociali nella battaglia simbolica per la definizione del fenomeno mafioso

2021

L’articolo affronta il tema dei rapporti di forza tra vari “campi sociali” (Bourdieu 2009, 2017) e tra varie discipline (Foucault 1971, 1974) nella battaglia simbolica per la definizione del fenomeno mafioso, indagando su quanto (e come) la definizione fornita in sede legislativa (tradotta in fattispecie penale nell’articolo 416bis) e/o applicata nella prassi giudiziaria, si avvalga del contributo di altre dottrine e in che modo istanze, retoriche e metodi di differenti saperi esperti (sociologia, storia, psicologia, economia, etc.) vengano “tradotte” (più o meno consapevolmente) nelle logiche del campo giuridico. Riconoscendo il valore performativo della legge (Derrida 2003) e la dimension…

"campo giuridico" associazione a delinquere di stampo mafioso processi di mafia imprenditori morali forza simbolicaSettore SPS/12 - Sociologia Giuridica Della Devianza E Mutamento Sociale“juridical field” Mafia-type criminal association Mafia trials moral entrepreneurs symbolic force
researchProduct

Reinforcement learning approach to nonequilibrium quantum thermodynamics

2021

We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- …

---Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamics01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeQuantum stateSHORTCUTS0103 physical sciencesQuantum systemReinforcement learningStatistical physics010306 general physicsQuantum thermodynamicsCondensed Matter - Statistical MechanicsADIABATICITYQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Entropy productionENTROPYsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct

Electron transport and the effect of current annealing in a two-point contacted hBN/graphene/hBN heterostructure device

2020

In this work, we fabricated a 2D van der Waals heterostructure device in an inert nitrogen atmosphere by means of a dry transfer technique in order to obtain a clean and largely impurity free stack of hexagonal boron nitride (hBN)-encapsulated few-layer graphene. The heterostructure was contacted from the top with gold leads on two sides, and the device’s properties including intrinsic charge carrier density, mobility, and contact resistance were studied as a function of temperature from 4 K to 270 K. We show that the contact resistance of the device mainly originates from the metal/graphene interface, which contributes a significant part to the total resistance. We demonstrate that current…

010302 applied physicsElectron mobilityMaterials scienceGraphenebusiness.industryAnnealing (metallurgy)Contact resistanceGeneral Physics and AstronomyHeterojunction02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionsymbols.namesakeImpuritylaw0103 physical sciencessymbolsOptoelectronicsDry transfervan der Waals force0210 nano-technologybusinessJournal of Applied Physics
researchProduct

Formation of dislocations and hardening of LiF under high-dose irradiation with 5–21 MeV 12C ions

2017

R. Zabels, I. Manika, J. Maniks, and R.Grants acknowledge the national project IMIS2, and A. Dauletbekova, M. Baizhumanov, and M. Zdorovets the Ministry of Education and Science of the Republic of Kazakhstan for the financial support.

010302 applied physicsEnergy lossMaterials sciencePhysics::Instrumentation and DetectorsAtomic force microscopyAstrophysics::High Energy Astrophysical PhenomenaPhysics::Medical Physicsmacromolecular substances02 engineering and technologyGeneral ChemistryNanoindentation021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsIsotropic etchingElastic collisionIonPhysics::Plasma Physics0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Hardening (metallurgy)General Materials ScienceIrradiationAtomic physics0210 nano-technologyApplied Physics A
researchProduct

Silicon Surface Passivation by ALD-Ga2O3: Thermal vs. Plasma-Enhanced Atomic Layer Deposition

2020

Silicon surface passivation by gallium oxide (Ga2O3) thin films deposited by thermal- and plasma-enhanced atomic layer deposition (ALD) over a broad temperature range from 75 °C to 350 °C is investigated. In addition, the role of oxidant (O3 or O-plasma) pulse lengths insufficient for saturated ALD-growth is studied. The material properties are analyzed including the quantification of the incorporated hydrogen. We find that oxidant dose pulses insufficient for saturation provide for both ALD methods generally better surface passivation. Furthermore, different Si surface pretreatments are compared (HF-last, chemically grown oxide, and thermal tunnel oxide). In contrast to previous reports, t…

010302 applied physicsKelvin probe force microscopeMaterials sciencePassivationSiliconAnnealing (metallurgy)OxideAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsAtomic layer depositionchemistry.chemical_compoundchemistry0103 physical sciencesElectrical and Electronic EngineeringThin film0210 nano-technologyUltraviolet photoelectron spectroscopyIEEE Journal of Photovoltaics
researchProduct

Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage

2016

Abstract The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

010302 applied physicsKelvin probe force microscopeMaterials sciencesurface potentialbusiness.industrySystem of measurementPhysicsQC1-999Composite numberGeneral EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOpticscontact potential differencekelvin probe0103 physical sciences0210 nano-technologybusinessVolta potentialVoltageLatvian Journal of Physics and Technical Sciences
researchProduct

Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy

2019

International audience; It is demonstrated that the N-polarity of GaN nanowires (NWs) spontaneously nucleated on Si (111) by molecular beam epitaxy can be reversed by intercalation of an Al-or Ga-oxynitride thin layer. The polarity change has been assessed by a combination of chemical etching, Kelvin probe force microscopy, cathodo-and photoluminescence spectroscopy and transmission electron microscopy experiments. Cathodoluminescence of the Ga-polar NW section exhibits a higher intensity in the band edge region, consistent with a reduced incorporation of chemical impurities. The polarity reversal method we propose opens the path to the integration of optimized metal-polar NW devices on any…

010302 applied physicsKelvin probe force microscopePolarity reversalMaterials sciencePhysics and Astronomy (miscellaneous)Polarity (physics)business.industryNanowireCathodoluminescence02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energyIsotropic etching[SPI.MAT]Engineering Sciences [physics]/MaterialsNanolithography0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologybusinessMolecular beam epitaxy
researchProduct

Object size effect on the contact potential difference measured by scanning Kelvin probe method

2010

International audience; Contact potential difference (CPD) was measured by macroscopic Kelvin probe instrument and scanning Kelvin probe microscope on Al, Ni and Pt on ITO substrates at ambient conditions. CPD values measured by scanning Kelvin probe microscope and macroscopic Kelvin probe are close within the error of about 10-30% for large studied objects, whereas scanning Kelvin probe microscope signal decreases, when the object size becomes smaller than 1.4 m. CPD and electric field signals measured using many-pass technique allowed us to estimate the influence of electrostatic field disturbance, especially, in the case of small objects.

010302 applied physicsKelvin probe force microscopeScanning Hall probe microscopeMicroscopeChemistrybusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSignalElectronic Optical and Magnetic Materialslaw.inventionScanning probe microscopyOpticslawElectric field0103 physical sciencesPhysical Sciences0210 nano-technologybusinessInstrumentationVolta potential
researchProduct

Determination of Contact Potential Difference by the Kelvin Probe (Part I) I. Basic Principles of Measurements

2016

Abstract Determination of electric potential difference using the Kelvin probe, i.e. vibrating capacitor technique, is one of the most sensitive measuring procedures in surface physics. Periodic modulation of distance between electrodes leads to changes in capacitance, thereby causing current to flow through the external circuit. The procedure of contactless, non-destructive determination of contact potential difference between an electrically conductive vibrating reference electrode and an electrically conductive sample is based on precise control measurement of Kelvin current flowing through a capacitor. The present research is devoted to creation of a new low-cost miniaturised measuremen…

010302 applied physicsKelvin probe force microscopesurface potentialMaterials scienceCondensed matter physicsPhysicsQC1-999General EngineeringGeneral Physics and Astronomy01 natural sciencescontact potential differencekelvin probe0103 physical sciences010306 general physicsVolta potentialLatvian Journal of Physics and Technical Sciences
researchProduct

Quasi-antiferromagnetic multilayer stacks with 90 degree coupling mediated by thin Fe oxide spacers

2019

We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90° magnetic coupling through an Fe-O layer. We investigated the magnetic properties and the relationship between the magnetic domain size and the 90° magnetic coupling via experiments and calculations. Two types of samples with a Ru buffer and a (Ni80Fe20)Cr40 buffer were prepared, and we found that with the NiFeCr buffer, the sample has a flatter Fe-O layer, leading to stronger 90° magnetic coupling and a smaller domain size compared with the Ru buffer sample. This trend is well explained by the bilinear and biquadratic coupling coefficients, A12 and B12, in L…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainAtomic force microscopy530 PhysicsOxideGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology530 Physik01 natural sciencesInductive couplingBuffer (optical fiber)Magnetizationchemistry.chemical_compoundchemistry0103 physical sciencesAntiferromagnetism0210 nano-technologyAntiparallel (electronics)
researchProduct