Search results for "Force Microscopy"

showing 10 items of 247 documents

Morphological characterization of baculovirus Autographa californica multiple nucleopolyhedrovirus

2009

The budded form of baculovirus Autographa californica multiple nucleopolyhedrovirus is used widely in biotechnological applications. In this study, we observed the morphology of baculovirus in nanometer scale by atomic force microscopy. Additionally, the correlation between transduction efficiency and virus stock storage time was evaluated. By atomic force microscopy, asymmetrical baculovirus particles with enlarged head regions were detected. Observed virus stocks contained variable-length particles, 256 ± 40 nm, along with disintegrated particles and/or cellular components. Long-term storage of stocks led to virus aggregation and decreased cellular entry and transgene expression in mammal…

Cancer ResearchbiologyAtomic force microscopyvirusesTransgeneVirionVirus InternalizationMicroscopy Atomic Forcebiology.organism_classificationMolecular biologyNucleopolyhedrovirusesVirusCell biologyAutographa californicaInfectious DiseasesVirologyHumansVirus StructureParticle sizeNucleocapsidGenome sizeHeLa CellsVirus Research
researchProduct

Determining cantilever stiffness from thermal noise

2013

We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency fn, quality factor Qn and specifically the stiffness kn of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine kn from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequ…

CantileverMaterials scienceAcousticsInstrumentationGeneral Physics and AstronomyNanotechnologythermal excitationlcsh:Chemical technologylcsh:TechnologySignal530Full Research PaperstiffnessQuality (physics)medicineNanotechnologylcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:Sciencecantileverlcsh:TOscillationSpectral densityStiffnessQ-factornoncontact atomic force microscopy (NC-AFM)lcsh:QC1-999spectral analysisNanoscienceresonanceQ factorlcsh:Qmedicine.symptomAFMlcsh:Physics
researchProduct

Scanning force microscopy based rapid force curve acquisition on supported lipid bilayers: experiments and simulations using pulsed force mode.

2004

In situ pulsed force mode scanning force microscopy (PFM-SFM) images of phase separated solid-supported lipid bilayers are discussed with the help of computer simulations. Simultaneous imaging of material properties and topography in a liquid environment by means of PFM-SFM is severely hampered by hydrodynamic damping of the cantilever. Stiffness and adhesion images of solid-supported membranes consisting of cholesterol, sphingomyelin, and 1,2-dioleyl-phosphatidylcholine obtained in aqueous solution exhibit contrast inversion of adhesion and stiff. ness images depending on parameters such as driving frequency, amplitude, and trigger setting. Simulations using a simple harmonic oscillator mo…

Cantileverbusiness.industryChemistryLipid BilayersPhase (waves)StiffnessSimple harmonic motionMicroscopy Atomic ForceAtomic and Molecular Physics and OpticsSphingomyelinsScanning probe microscopyOpticsCholesterolmedicinePhosphatidylcholinesComputer SimulationPhysical and Theoretical Chemistrymedicine.symptombusinessMaterial propertiesLipid bilayerNon-contact atomic force microscopyChemphyschem : a European journal of chemical physics and physical chemistry
researchProduct

Nanoscale Mapping of the Physical Surface Properties of Human Buccal Cells and Changes Induced by Saliva

2019

International audience; The mucosal pellicle, also called salivary pellicle, is a thin biological layer made of salivary and epithelial constituents, lining oral mucosae. It contributes to their protection against microbiological, chemical, or mechanical insults. Pellicle formation depends on the cells’ surface properties, and in turn the pellicle deeply modifies such properties. It has been reported that the expression of the transmembrane mucin MUC1 in oral epithelial cells improves the formation of the mucosal pellicle. Here, we describe an approach combining classical and functionalized tip atomic force microscopy and scanning microwave microscopy to characterize how MUC1 induces change…

Cell typeSalivaSurface Properties[SDV]Life Sciences [q-bio]Cellhuman buccal cells02 engineering and technology010402 general chemistry01 natural sciences[SPI]Engineering Sciences [physics]MicroscopyElectrochemistrymedicineElectric ImpedanceHumansNanotechnologyGeneral Materials ScienceSpectroscopyMUC1hydrophobicity[PHYS]Physics [physics]MouthsalivaChemistryMucinSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsTransmembrane protein0104 chemical sciencesScanning Microwave Microscopy SMMmedicine.anatomical_structureChemical force microscopydielectric propertiesBiophysicsChemical Force Microscopyfuntionalization0210 nano-technologyHydrophobic and Hydrophilic Interactions
researchProduct

Cellular basis of abnormal tissue hardening in lung fibrosis examined with atomic force microscopy

2010

Cellular basisPathologymedicine.medical_specialtyMaterials scienceAtomic force microscopyLung fibrosisHardening (metallurgy)medicine
researchProduct

Correlation between surface forces and surface reactivity in the setting of plaster by atomic force microscopy

2000

Abstract The setting of mineral binders (cement, plaster, etc.) arises as a direct consequence of surface reactivity by a process of dissociation and rehydration. This transformation induces a complete change of surface forces, of which the nature remains still unknown. The general process of the setting has been studied by means of plaster (CaSO 4 ·0.5H 2 O) crystals, chosen for an experimental convenience. The surface alteration (growth, dissolution, atomic resolution) of the plaster crystal with respect to the introduction of the calcium sulfate solution has been followed by using atomic force microscopy (AFM. Alternatively, this apparatus has been adapted by gluing a plaster microcrysta…

CementGypsumChemistryAtomic force microscopySurface forceGeneral Physics and AstronomyMineralogyCrystal growthSurfaces and InterfacesGeneral Chemistryengineering.materialCondensed Matter PhysicsDissociation (chemistry)Surfaces Coatings and FilmsCrystalengineeringComposite materialDissolutionApplied Surface Science
researchProduct

Crystal structure and magnetic properties of Cu(TIM)CuBr4: An alternating site-alternating exchange chain system

2007

Abstract The title compound, Cu(TIM)CuBr4 (where TIM is a macrocycle ligand) is a member of the Cu(TIM)MX4 family, which contains linear chain structures with ⋯ Cu ⋯ X – M – X ⋯ Cu ⋯ X – M - ⋯ linkages. This chain structure defines an alternating exchange/alternating site 1d system. For M=Cu, alternating FM/AFM chains are formed with JFM>| JAFM|. Structural and magnetic data are presented, along with an analysis of the exchange pathways.

Chain structureCrystallographyNuclear magnetic resonanceMaterials scienceChain (algebraic topology)Atomic force microscopyLigandChain systemCrystal structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct

Soft-Chemical Growth ofγ-FeO(OH) Films on Self-Assembled Monolayers of Substituted Alkylthiols on Gold(111)

1999

Chemical engineeringAtomic force microscopyChemistryOrganic ChemistryInorganic chemistryMössbauer spectroscopySelf-assembled monolayerGeneral ChemistryTemplate synthesisCatalysisChemistry - A European Journal
researchProduct

Size-controlled magnetic nanoparticles in surfactant-rich thin films: a combined EXAFS, SAXS, AFM and MFM study

2008

Chemical synthesis methodAtomic force microscopyMagnetic NanoparticleStructure of nanoscale materials.Thin films morphologyTransmission electron microscopy
researchProduct

Mesoscopic self-organisation of magnetic Cobalt-based nanofibers and nanoclusters in surfactant matrix

2008

Chemical synthesis methodThin film structure and morphologyAtomic force microscopy (AFM)Nanoscale materials and structures: fabrication and characterizationTransmission electron microscopy (TEM)Structure of nanoscale materials.
researchProduct