Search results for "Fugacity"

showing 10 items of 38 documents

Seawater carbonate chemistry and community structure of marine biofouling communities

2018

Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO2 change and, if high pCO2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO2 stress, or are worsened by departures from prior high pCO2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments al…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateIdentificationSalinityCommunity composition and diversityBicarbonate ion standard deviationinorganicAlkalinity total standard deviationAlkalinityTime in weeksExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateAlkalinity totaltotalCO2 ventpHTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentTemperature water standard deviationEarth System Researchstandard deviationCalcite saturation statewaterPartial pressure of carbon dioxideSiteRocky-shore communityAragonite saturation state standard deviationBenthosSalinity standard deviationOcean Acidification International Coordination Centre OA ICCMediterranean SeaCarbon inorganic dissolved standard deviationCalcite saturation state standard deviationTypeBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)Shannon Diversity IndexCalculated using CO2SYSIndividualsPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideRocky shore communityEntire communityFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfNumber of species
researchProduct

Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient

2015

Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateIdentificationSalinityCommunity composition and diversityTriloculinella dilatatainorganicAlkalinityElphidium spMiliolinella sp.Miliolinella subrotundaQuinqueloculina sp.Daitrona spTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Adelosina longirostraPercentageAragonite saturation stateMiliolinella spRosalina globularisAlkalinity totaltotalElphidium sp.Elphidium crispumCO2 ventElphidium advenumpHTemperaturedissolvedPseudotriloculina spCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Rosalina spQuinqueloculina annectensEarth System ResearchHaynesina depressulaField observationElphidium margaritaceumPotentiometric titrationCalcite saturation statePotentiometricwaterMassilina gualtierianaRocky-shore communitySpiroloculina ornataQuinqueloculina auberianaBenthosDaitrona sp.Pileolina patelliformisOcean Acidification International Coordination Centre OA ICCMediterranean SeaBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)SpeciesVertebralina striataAffinetrina gualtierianaElphidium macellumCalculated using CO2SYSIndividualsCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)Rosalina sp.CarbonBiomass/Abundance/Elemental compositionBolivina pseudoplicataPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideQuinqueloculina stelligeraQuinqueloculina spPeneroplis pertususRocky shore communityEntire communityPeneroplis planatusFugacity of carbon dioxide water at sea surface temperature wet airCornuspira involvensBiomass Abundance Elemental compositionCoast and continental shelfLobatula lobatulaQuinqueloculina boscianaPseudotriloculina sp.
researchProduct

Seawater carbonate chemistry and growth, physiological performance of the Manila clam Ruditapes philippinarum

2018

Ocean acidification may interfere with the calcifying physiology of marine bivalves. Therefore, understanding their capacity for acclimation and adaption to low pH over multiple generations is crucial to make predictions about the fate of this economically and ecologically important fauna in an acidifying ocean. Transgenerational exposure to an acidification scenario projected by the end of the century (i.e., pH 7.7) has been shown to confer resilience to juvenile offspring of the Manila clam, Ruditapes philippinarum. However, whether, and to what extent, this resilience can persist into adulthood are unknown and the mechanisms driving transgenerational acclimation remain poorly understood.…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesCondition indexSalinityBicarbonate ion standard deviationinorganicAlkalinity total standard deviationAlkalinityCalculated using seacarb after Orr et al. (2018)Growth rate standard deviationFugacity of carbon dioxide in seawater standard deviationExperimentTemperature waterCarbon inorganic dissolvedRuditapes philippinarumCalculated using seacarb after Nisumaa et al 2010PercentageAragonite saturation stateNorth PacificAlkalinity totalδ13C dissolved inorganic carbon standard deviationtotalpHRespirationTemperaturedissolvedLaboratory experimentCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Carbon dioxide standard deviationTemperature water standard deviationContainers and aquaria 20 1000 L or 1 m 2δ13C dissolved inorganic carbonEarth System Researchδ13CContainers and aquaria (20-1000 L or &lt; 1 m**2)Metabolic rate of oxygen standard deviationstandard deviationUniform resource locator link to referenceCalcite saturation stateFugacity of carbon dioxide in seawaterwaterPartial pressure of carbon dioxideGrowth MorphologyContainers and aquaria (20-1000 L or < 1 m**2)Aragonite saturation state standard deviationBenthosUniform resource locator/link to referenceOther studied parameter or processSalinity standard deviationOcean Acidification International Coordination Centre OA ICCAnimaliaCarbon inorganic dissolved standard deviationCalcite saturation state standard deviationTypeBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)SpeciesGrowth rateCondition index standard deviationPartial pressure of carbon dioxide standard deviationMetabolic rate of oxygenCarbonate system computation flagpH standard deviationCarbonate ion standard deviationdissolved inorganic carbonCalculated using seacarb after Orr et al 2018Fugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologySingle speciesFugacity of carbon dioxide water at sea surface temperature wet airBenthic animalsδ13C standard deviationCoast and continental shelf
researchProduct

Seawater carbonate chemistry and somatic and otolith growth relationship of Symphodus ocellatus

2019

Ocean acidification (OA) may have varied effects on fish eco-physiological responses. Most OA studies have been carried out in laboratory conditions without considering the in situ pCO2/pH variability documented for many marine coastal ecosystems. Using a standard otolith ageing technique, we assessed how in situ ocean acidification (ambient, versus end-of-century CO2 levels) can affect somatic and otolith growth, and their relationship in a coastal fish. Somatic and otolith growth rates of juveniles of the ocellated wrasse Symphodus ocellatus living off a Mediterranean CO2 seep increased at the high-pCO2 site. Also, we detected that slower-growing individuals living at ambient pCO2 levels …

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesIdentificationSalinityinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateChordataAlkalinity totaltotalCO2 ventTime in dayspHPelagosSymphodus ocellatusTemperaturedissolvedLength totalCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Temperature water standard deviationEarth System Researchstandard deviationField observationUniform resource locator link to referencePotentiometric titrationCalcite saturation stateLengthPotentiometricwaterPartial pressure of carbon dioxideSiteGrowth MorphologyAgeUniform resource locator/link to referenceSalinity standard deviationOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaTypeSampling dateBicarbonate ionNektonCalculated using seacarb after Nisumaa et al. (2010)SpeciesCalculated using CO2SYSPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideGrowth/MorphologySingle speciesFugacity of carbon dioxide water at sea surface temperature wet airsense organs
researchProduct

Seawater carbonate chemistry and percentage cover of macroalgal species at three locations at Vulcano, Italy

2017

Beneficial effects of CO2 on photosynthetic organisms will be a key driver of ecosystem change under ocean acidification. Predicting the responses of macroalgal species to ocean acidification is complex, but we demonstrate that the response of assemblages to elevated CO2 are correlated with inorganic carbon physiology. We assessed abundance patterns and a proxy for CO2:HCO3- use (delta 13C values) of macroalgae along a gradient of CO2 at a volcanic seep, and examined how shifts in species abundance at other Mediterranean seeps are related to macroalgal inorganic carbon physiology. Five macroalgal species capable of using both HCO3- and CO2 had greater CO2 use as concentrations increased. Th…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityCaulerpa proliferaCommunity composition and diversityBicarbonate ion standard deviationUdotea petiolatainorganicAlkalinity total standard deviationAlkalinitySargassum muticumDictyota dichotomaHalopteris scopariaYearsCystoseira brachycarpaExperimentTemperature waterCarbon inorganic dissolvedCystoseira foeniculaceaCaulerpa racemosaCalculated using seacarb after Nisumaa et al 2010Cystoseira foeniculataAragonite saturation stateAlkalinity totaltotalCO2 ventpHTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Acetabularia acetabulumJania rubensCarbon dioxide standard deviationEarth System Researchδ13CLipid contentstandard deviationField observationUniform resource locator link to referenceCystoseira crinitaCoverageCalcite saturation stateLocationwaterSiteRocky-shore communityFigureBenthosUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCMediterranean SeaCarbon inorganic dissolved standard deviationTypeBicarbonate ionDictyopteris polypodioidesDilophus fasciolaCalculated using seacarb after Nisumaa et al. (2010)SpeciesCystoseira compressaEvent labelCarbonate system computation flagpH standard deviationCarbonate ion standard deviationMassFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonOxygenPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideRocky shore communityEntire communityFugacity of carbon dioxide water at sea surface temperature wet airPadina pavonicaSeasonδ13C standard deviationCoast and continental shelfCodium bursaTableCystoseira barbarta
researchProduct

Seawater carbonate chemistry and carbon sources of mussel shell carbonate

2018

Ocean acidification and warming is widely reported to affect the ability of marine bivalves to calcify, but little is known about the underlying mechanisms. In particular, the response of their calcifying fluid carbonate chemistry to changing seawater carbonate chemistry remains poorly understood. The present study deciphers sources of the dissolved inorganic carbon (DIC) in the calcifying fluid of the blue mussel (Mytilus edulis) reared at two pH (8.1 and 7.7) and temperature (16 and 22 °C) levels for five weeks. Stable carbon isotopic ratios of seawater DIC, mussel soft tissues and shells were measured to determine the relative contribution of seawater DIC and metabolically generated carb…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityMytilus edulisinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedhemic and lymphatic diseasesCalculated using seacarb after Nisumaa et al 2010PercentageAragonite saturation stateNorth Pacificδ13C dissolved inorganic carbon standard deviationAlkalinity totalSalinity standard errortotalpHTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedLaboratory experimentCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorContainers and aquaria 20 1000 L or 1 m 2δ13C dissolved inorganic carbonEarth System Researchδ13CContainers and aquaria (20-1000 L or &lt; 1 m**2)standard deviationUniform resource locator link to referencecirculatory and respiratory physiologyCalcite saturation statewaterContainers and aquaria (20-1000 L or < 1 m**2)BenthosAlkalinity total standard errorUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCAnimaliaTypeBicarbonate ionTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorCalcite saturation state standard errorCarbonate system computation flagdissolved inorganic carbonFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airBenthic animalsδ13C standard deviationBiomass Abundance Elemental compositionCoast and continental shelf
researchProduct

Individual and population-level responses to ocean acidification

2016

Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the pr…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityinorganicBottles or small containers/Aquaria (<20 L)AlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenBottles or small containers Aquaria 20 LAlkalinity totalSalinity standard errortotalCO2 ventpHRespirationTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentstandard errorCarbon inorganic dissolved standard errorRespiration rateEarth System ResearchSexUniform resource locator link to referencePotentiometric titrationCalcite saturation stateDry masswaterSiteHexaplex trunculusBenthosAlkalinity total standard errorUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaTypeBicarbonate ionTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciesWet massBottles or small containers/Aquaria (&lt;20 L)Calculated using CO2SYSCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airBenthic animalsBiomass Abundance Elemental compositionCoast and continental shelfoxygen
researchProduct

Seawater carbonate chemistry and fish communities properties off CO2 seeps in Japan

2020

Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated …

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityCanopy heightCommunity composition and diversityCoverage standard deviationinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateNorth PacificAlkalinity totaltotalCO2 ventReplicatespHPelagosTemperaturedissolvedCanopy height standard deviationCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Fish standard deviationTemperature water standard deviationEarth System Researchstandard deviationField observationgeographic locationsPotentiometric titrationCoverageCalcite saturation stateLocationPotentiometricwaterPartial pressure of carbon dioxideSiteRocky-shore communityBenthosSpecies richness standard deviationSalinity standard deviationOcean Acidification International Coordination Centre OA ICCBiotic Habitat Profile ratioTypeBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)Calculated using CO2SYSfungiPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airFishTransectCarbon dioxideRocky shore communityEntire communityBiotic Habitat Profile ratio standard deviationFugacity of carbon dioxide water at sea surface temperature wet airSeasonCoast and continental shelfSpecies richness
researchProduct

Macroalgal responses to ocean acidification depend on nutrient and light levels

2015

Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ …

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityChlorophyll aFucoxanthininorganicAlkalinityPhotosynthetic efficiency standard errorChlorophyll cNitrogen content per dry mass standard errorLight saturation point standard errorPhenolics allTemperature waterCarbon inorganic dissolvedMacroalgaeCalculated using seacarb after Nisumaa et al 2010Carbon Nitrogen ratioAragonite saturation stateAlkalinity totalallCarbon per dry massSalinity standard errortotalCarbon content per dry mass standard errorPhenolics all standard errorCO2 ventChromistapHMaximum photochemical quantum yield of photosystem II standard errorTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedAntioxidant activity standard errorCarbonate ionMaximum photochemical quantum yield of photosystem IIPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentstandard errorNitrogen content per dry massElectron transport rate standard errorFucoxanthin standard errorEarth System ResearchViolaxanthinPhenolicsChlorophyll a standard errorCarbon dioxide standard errorPotentiometric titrationCalcite saturation stateCarbon/Nitrogen ratio standard errorNitrogenOchrophytaPotentiometricper dry masswaterChlorophyll c standard errorBenthosAlkalinity total standard errorAntioxidant activityElectron transport rateLight saturation pointOcean Acidification International Coordination Centre OA ICCMacro-nutrientsMediterranean SeaNitrogen per dry massBicarbonate ionTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)Primary production PhotosynthesisSpeciespH standard errorCalcite saturation state standard errorCystoseira compressaCalculated using CO2SYSNon photochemical quenchingCarbon content per dry massCarbonate system computation flagViolaxanthin standard errorPrimary production/PhotosynthesisFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonCarbon/Nitrogen ratioBiomass/Abundance/Elemental compositionTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airAragonite saturation state standard errorCarbon dioxideMacro nutrientsCarbonate ion standard errorSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airPadina pavonicaBiomass Abundance Elemental compositionCoast and continental shelfPhotosynthetic efficiencyBicarbonate ion standard errorNon photochemical quenching standard error
researchProduct

Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent

2014

We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityChlorophyll ainorganicAlkalinityLight saturation point standard errorPhotosynthetic quantum efficiencyMediterranean Sea Acidification in a Changing Climate MedSeATemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010IrradianceRespiration rate carbonAragonite saturation stateBiomassAlkalinity totalIrradiance standard errortotalCO2 ventCymodocea nodosapHRespirationEpiphytes loadMaximum photochemical quantum yield of photosystem II standard errorNet community production of carbonTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedRespiration rate carbon standard errorCarbonate ionMaximum photochemical quantum yield of photosystem IIPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Net community production of carbon standard errorIlluminance standard errorSoft bottom communitystandard errorCarbon inorganic dissolved standard errorRespiration rateElectron transport rate standard errorEarth System Researchδ13CPhotosynthetic quantum efficiency standard errorField observationChlorophyll a standard errorGross primary production of carbonBiomass standard errorCalcium carbonatePotentiometric titrationCalcite saturation stateShoot densityPotentiometricwaterIlluminanceOxygen standard errorBenthosAlkalinity total standard errorMediterranean Sea Acidification in a Changing Climate (MedSeA)Electron transport rateLight saturation pointOcean Acidification International Coordination Centre OA ICCMediterranean SeaGross primary production of carbon standard errorBicarbonate ionSoft-bottom communityδ13C standard errorTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)Primary production PhotosynthesisSpeciespH standard errorCarbonate system computation flagloadPrimary production/PhotosynthesisFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionTreatmentEpiphytes load standard errorOxygenPartial pressure of carbon dioxide water at sea surface temperature wet airEpiphytes loadCarbon dioxideCarbon standard errorEntire communityFugacity of carbon dioxide water at sea surface temperature wet airGroupBiomass Abundance Elemental compositionCoast and continental shelfEpiphytesShoot density standard errorCalcium carbonate standard error
researchProduct