Search results for "GRADE"
showing 10 items of 695 documents
Identities of PI-Algebras Graded by a Finite Abelian Group
2011
We consider associative PI-algebras over an algebraically closed field of zero characteristic graded by a finite abelian group G. It is proved that in this case the ideal of graded identities of a G-graded finitely generated PI-algebra coincides with the ideal of graded identities of some finite dimensional G-graded algebra. This implies that the ideal of G-graded identities of any (not necessary finitely generated) G-graded PI-algebra coincides with the ideal of G-graded identities of the Grassmann envelope of a finite dimensional (G × ℤ2)-graded algebra, and is finitely generated as GT-ideal. Similar results take place for ideals of identities with automorphisms.
Group algebras and Lie nilpotence
2013
Abstract Let ⁎ be an involution of a group algebra FG induced by an involution of the group G. For char F ≠ 2 , we classify the groups G with no 2-elements and with no nonabelian dihedral groups involved whose Lie algebra of ⁎-skew elements is nilpotent.
Group algebras of torsion groups and Lie nilpotence
2010
Letbe an involution of a group algebra FG induced by an involution of the group G. For char F 0 2, we classify the torsion groups G with no elements of order 2 whose Lie al- gebra of � -skew elements is nilpotent.
Irreducible Finitary Lie Algebras over Fields of Characteristic Zero
1998
Abstract A Lie subalgebraLof g l K (V) is said to befinitaryif it consists of elements of finite rank. We show that if Char K = 0, if dim K Vis infinite, and ifLacts irreducibly onV, then the derived algebra ofLis simple.
Polynomial codimension growth of algebras with involutions and superinvolutions
2017
Abstract Let A be an associative algebra over a field F of characteristic zero endowed with a graded involution or a superinvolution ⁎ and let c n ⁎ ( A ) be its sequence of ⁎-codimensions. In [4] , [12] it was proved that if A is finite dimensional such sequence is polynomially bounded if and only if A generates a variety not containing a finite number of ⁎-algebras: the group algebra of Z 2 and a 4-dimensional subalgebra of the 4 × 4 upper triangular matrices with suitable graded involutions or superinvolutions. In this paper we focus our attention on such algebras since they are the only finite dimensional ⁎-algebras, up to T 2 ⁎ -equivalence, generating varieties of almost polynomial gr…
Group graded algebras and multiplicities bounded by a constant
2013
AbstractLet G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant.
Multialternating graded polynomials and growth of polynomial identities
2012
Let G be a finite group and A a finite dimensional G-graded algebra over a field of characteristic zero. When A is simple as a G-graded algebra, by mean of Regev central polynomials we construct multialternating graded polynomials of arbitrarily large degree non vanishing on A. As a consequence we compute the exponential rate of growth of the sequence of graded codimensions of an arbitrary G-graded algebra satisfying an ordinary polynomial identity. In particular we show it is an integer. The result was proviously known in case G is abelian.
Geometric properties of involutive distributions on graded manifolds
1997
AbstractA proof of the relative version of Frobenius theorem for a graded submersion, which includes a very short proof of the standard graded Frobenius theorem is given. Involutive distributions are then used to characterize split graded manifolds over an orientable base, and split graded manifolds whose Batchelor bundle has a trivial direct summand. Applications to graded Lie groups are given.
A class of nilpotent Lie algebras admitting a compact subgroup of automorphisms
2017
Abstract The realification of the ( 2 n + 1 ) -dimensional complex Heisenberg Lie algebra is a ( 4 n + 2 ) -dimensional real nilpotent Lie algebra with a 2-dimensional commutator ideal coinciding with the centre, and admitting the compact algebra sp ( n ) of derivations. We investigate, in general, whether a real nilpotent Lie algebra with 2-dimensional commutator ideal coinciding with the centre admits a compact Lie algebra of derivations. This also gives us the occasion to revisit a series of classic results, with the expressed aim of attracting the interest of a broader audience.
Identities of *-superalgebras and almost polynomial growth
2015
We study the growth of the codimensions of a *-superalgebra over a field of characteristic zero. We classify the ideals of identities of finite dimensional algebras whose corresponding codimensions are of almost polynomial growth. It turns out that these are the ideals of identities of two algebras with distinct involutions and gradings. Along the way, we also classify the finite dimensional simple *-superalgebras over an algebraically closed field of characteristic zero.