Search results for "Gaussian process"
showing 10 items of 128 documents
Autonomous ultrasonic inspection using Bayesian optimisation and robust outlier analysis
2020
The use of robotics is beginning to play a key role in automating the data collection process in Non Destructive Testing (NDT). Increasing the use of automation quickly leads to the gathering of large quantities of data, which makes it inefficient, perhaps even infeasible, for a human to parse the information contained in them. This paper presents a solution to this problem by making the process of NDT data acquisition an autonomous one as opposed to an automatic one. In order to achieve this, the robotic data acquisition task is treated as an optimisation problem, where one seeks to find locations with the highest indication of damage. The resulting algorithm combines damage detection tech…
An Interactive Framework for Offline Data-Driven Multiobjective Optimization
2020
We propose a framework for solving offline data-driven multiobjective optimization problems in an interactive manner. No new data becomes available when solving offline problems. We fit surrogate models to the data to enable optimization, which introduces uncertainty. The framework incorporates preference information from a decision maker in two aspects to direct the solution process. Firstly, the decision maker can guide the optimization by providing preferences for objectives. Secondly, the framework features a novel technique for the decision maker to also express preferences related to maximum acceptable uncertainty in the solutions as preferred ranges of uncertainty. In this way, the d…
Probabilistic cross-validation estimators for Gaussian process regression
2018
Gaussian Processes (GPs) are state-of-the-art tools for regression. Inference of GP hyperparameters is typically done by maximizing the marginal log-likelihood (ML). If the data truly follows the GP model, using the ML approach is optimal and computationally efficient. Unfortunately very often this is not case and suboptimal results are obtained in terms of prediction error. Alternative procedures such as cross-validation (CV) schemes are often employed instead, but they usually incur in high computational costs. We propose a probabilistic version of CV (PCV) based on two different model pieces in order to reduce the dependence on a specific model choice. PCV presents the benefits from both…
Towards Quantifying Non-Photosynthetic Vegetation for Agriculture Using Spaceborne Imaging Spectroscopy
2021
Non-photosynthetic vegetation (NPV) has been identified as priority variable in the context of new spaceborne imaging spectroscopy missions. In this study we provide a first attempt to quantify NPV biomass from these unprecedented data streams to be provided by multiple recently launched or planned instruments. A hybrid workflow is proposed including Gaussian process regression (GPR) trained over radiative transfer model (RTM) simulations and applying active learning strategies. A soybean field data set including two dates with NPV measurements on yellow and senescent (brown) plant organs was used for model validation, resulting in relative errors of 13.4%. This prototype retrieval model wa…
Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring
2016
Abstract This paper presents an operational chain for high-resolution leaf area index (LAI) retrieval from multiresolution satellite data specifically developed for Mediterranean rice areas. The proposed methodology is based on the inversion of the PROSAIL radiative transfer model through the state-of-the-art nonlinear Gaussian process regression (GPR) method. Landsat and SPOT5 data were used for multitemporal LAI retrievals at high-resolution. LAI estimates were validated using time series of in situ LAI measurements collected during the rice season in Spain and Italy. Ground LAI data were collected with smartphones using PocketLAI, a specific phone application for LAI estimation. Temporal…
Crop Phenology Retrieval Through Gaussian Process Regression
2021
Monitoring crop phenology significantly assists agricultural managing practices and plays an important role in crop yield predictions. Multi-temporal satellite-based observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or deriving biophysical variables. This study presents a framework for automatic corn phenology characterization based on high spatial and temporal resolution time series. By using the Difference Vegetation Index (DVI) estimated from Sentinel-2 data over Iowa (US), independent phenological models were optimized using Gaussian Processes regression. Their respective performances were assessed based on simulated phenological indi…
Crop Yield Estimation and Interpretability With Gaussian Processes
2021
This work introduces the use of Gaussian processes (GPs) for the estimation and understanding of crop development and yield using multisensor satellite observations and meteo- rological data. The proposed methodology combines synergistic information on canopy greenness, biomass, soil, and plant water content from optical and microwave sensors with the atmospheric variables typically measured at meteorological stations. A com- posite covariance is used in the GP model to account for varying scales, nonstationary, and nonlinear processes. The GP model reports noticeable gains in terms of accuracy with respect to other machine learning approaches for the estimation of corn, wheat, and soybean …
Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression
2021
Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time seri…
Distributed channel prediction for multi-agent systems
2017
Los sistemas multiagente (MAS) se comunican a través de una red inalámbrica para coordinar sus acciones e informar sobre el estado de su misión. La conectividad y el rendimiento del sistema pueden mejorarse mediante la predicción de la ganancia del canal. Presentamos un esquema basado en regresión de procesos gaussianos (GPR) distribuidos para predecir el canal inalámbrico en términos de la potencia recibida en el MAS. El esquema combina una máquina de comité bayesiano con un esquema de consenso medio, distribuyendo así no sólo la memoria sino también la carga computacional y de comunicación. A través de simulaciones de Monte Carlo, demostramos el rendimiento del GPR propuesto. RACHEL TEC20…
Integrating Physics Modelling with Machine Learning for Remote Sensing
2020
L’observació de la Terra a partir de les dades proporcionades per sensors abord de satèl·lits, així com les proporcionades per models de transferència radiativa o climàtics, juntament amb les mesures in situ proporcionen una manera sense precedents de monitorar el nostre planeta amb millors resolucions espacials i temporals. La riquesa, quantitat i diversitat de les dades adquirides i posades a disposició també augmenta molt ràpidament. Aquestes dades ens permeten predir el rendiment dels cultius, fer un seguiment del canvi d’ús del sòl com ara la desforestació, supervisar i respondre als desastres naturals, i predir i mitigar el canvi climàtic. Per tal de fer front a tots aquests reptes, l…