Search results for "Graphene Oxide"

showing 10 items of 82 documents

Understanding the role of graphene oxide in the capture and eradication of circulating tumor cells

2016

The capture of circulating cancer cells on functional biomaterials is expected to control metastatic spread of a tumor, which is related to good probability containing the progression of disease burden. (1) The physicochemical characteristics of a biomaterial surface highly affect cell recruitment and adhesion, which is of great importance in such applications. Here, we designed a poly(caprolactone)-based nanocompsite scaffold, henceforth PCLMF-GO, to simultaneously recruit and kill circulating cancer cells by tuning physicochemical features of the scaffold surface through nitrogen plasma activation and hetero-phase graphene oxide (GO) covalent functionalization. Nitrogen plasma activation …

Graphene Oxide Cancer cells recruitment Cancer therapy Polycaprolactone
researchProduct

Graphene oxide surface functionalization of polymeric scaffolds for the recruitment and thermal ablation of tumor cells

2017

Graphene oxide cancer cells recruitment photothermal ablation
researchProduct

Novel diamond X-ray detectors with patterned reduced graphene oxide contacts

2015

A novel kind of detector based on polycrystalline grade diamond substrate and Reduced Graphene Oxide (RGO) contacts is presented. This detector combines some of the good qualities of diamond (i.e. radiation hardness and almost unique combination of electric, thermal and optical properties) with low- Z contacts. This characteristic together with the possibility of patterning the electrodes with standard lithographic techniques, make this detector particularly suitable for X-ray beam monitors where the intensity and the position of the photon beam needs to be measured with minimal effect on the beam itself (i.e. in-line and highly transmissive measurement). The steps needed to realize our nov…

Graphene Reduced Graphene Oxide X-ray detectors
researchProduct

Near-Infrared, Light-Triggered, On-Demand Antiinflammatories and Antibiotics Release by Graphene Oxide/Elecrospun PCL Patch for Wound Healing

2019

Very recently, significant attention has been focused on the adsorption and cell adhesion properties of graphene oxide (GO), because it is expected to allow high drug loading and controlled drug release, as well as the promotion of cell adhesion and proliferation. This is particularly interesting in the promotion of wound healing, where antibiotics and anti-inflammatories should be locally released for a prolonged time to allow fibroblast proliferation. Here, we designed an implantable patch consisting of poly(caprolactone) electrospun covered with GO, henceforth named GO&ndash

Ketoprofenvancomycinwound healing02 engineering and technology010402 general chemistry01 natural scienceslcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryIn vivopolycaprolactonemedicineFibroblastCell adhesionplasmaGeneral MedicineAdhesion021001 nanoscience & nanotechnologyon-demand drug release0104 chemical sciencesmedicine.anatomical_structurechemistryPolycaprolactoneBiophysicsgraphene oxide0210 nano-technologyWound healingCaprolactonemedicine.drug
researchProduct

Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug deliver…

2020

PEGylated graphene oxide (GO) has shown potential as NIR converting agent to produce local heat useful in breast cancer therapy, since its suitable photothermal conversion, high stability in physiological fluids, biocompatibility and huge specific surface. GO is an appealing nanomaterial for potential clinical applications combining drug delivery and photothermal therapy in a single nano-device capable of specifically targeting breast cancer cells. However, native GO sheets have large dimensions (0.5-5 mu m) such that tumor accumulation after a systemic administration is usually precluded. Herein, we report a step-by-step synthesis of folic acid-functionalized PEGylated GO, henceforth named…

Materials scienceBiocompatibilityPlasma GasesCell SurvivalInfrared RaysBioengineeringNanotechnologyAntineoplastic Agents02 engineering and technology010402 general chemistrySettore CHIM/04 - Chimica Industriale01 natural sciencesNANOMEDICINECell LinePolyethylene GlycolsBiomaterialsBreast cancerBreast cancerFolic AcidCell MovementmedicineNANOPARTICLESABLATIONHumansDoxorubicinCANCER-CELLSAGENTSGraphene oxideDrug Carrierstechnology industry and agriculturePhotothermal therapyPhototherapy021001 nanoscience & nanotechnologymedicine.disease0104 chemical sciencesNanostructuresDrug LiberationTargeted drug deliverySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoMechanics of MaterialsDoxorubicinCancer cellDrug deliveryDoxorubicin HydrochlorideGraphiteSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologySYSTEMmedicine.drugMaterials scienceengineering. C, Materials for biological applications
researchProduct

Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials.

2020

Sore, infected wounds are a major clinical issue, and there is thus an urgent need for novel biomaterials as multifunctional constituents for dressings. A set of biocomposites was prepared by solvent casting using different concentrations of carboxymethylcellulose (CMC) and exfoliated graphene oxide (Exf-GO) as a filler. Exf-GO was first obtained by the strong oxidation and exfoliation of graphite. The structural, morphological and mechanical properties of the composites (CMCx/Exf-GO) were evaluated, and the obtained composites were homogenous, transparent and brownish in color. The results confirmed that Exf-GO may be homogeneously dispersed in CMC. It was found that the composite has an i…

Materials scienceComposite numberOxide02 engineering and technology010402 general chemistry01 natural scienceslcsh:TechnologyArticlelaw.inventionmedical deviceschemistry.chemical_compoundbiocompatibilitylawGeneral Materials ScienceGraphitelcsh:Microscopygraphene oxide nanocompositeSettore CHIM/02 - Chimica Fisicalcsh:QC120-168.85carboxymethyl celluloseNanocompositelcsh:QH201-278.5Graphenelcsh:T021001 nanoscience & nanotechnologyCastingExfoliation joint0104 chemical sciencesSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringlcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials (Basel, Switzerland)
researchProduct

Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships

2017

Abstract Polycaprolactone (PCL) biocomposite nanofiber scaffolds with different concentrations of graphene oxide (GO) and GO surface grafted with poly(ethylene glycol) (GO-g-PEG) were prepared by electrospinning. Morphological, mechanical as well as wettability characterizations of electrospun nanofibers were carried out. Results showed that the average diameter of PLA/GO electrospun nanofibers decreased upon increasing the filler content. Differently, the diameter increased while using GO-g-PEG. Both nanofillers enhanced the electrospun PCL hydrophilicity even if PCL/GO-g-PEG samples exhibited improved wettability. The Young moduli of the composite nanofiber mats were improved by adding GO…

Materials scienceComposite numbermacromolecular substances02 engineering and technology010402 general chemistry01 natural sciencesMultifunctional compositechemistry.chemical_compoundPEG ratioComposite materialtechnology industry and agriculturePEGylated graphene oxideequipment and supplies021001 nanoscience & nanotechnologyGraftingElectrospinning0104 chemical scienceschemistryMechanics of MaterialsNanofiberPolycaprolactoneCeramics and CompositesBiocomposite0210 nano-technologyBiocompositeMechanical propertieEthylene glycolComposites Part A: Applied Science and Manufacturing
researchProduct

Ascorbic Acid determination using linear sweep voltammetry on flexible electrode modified with gold nanoparticles and reduced graphene oxide

2020

Indium tin oxide (ITO) coated on flexible polyethylene terephthalate (PET) substrate electrode was modified with reduced graphene oxide and gold nanoparticles by simple co-electrodeposition performed at -0.8 V vs SCE for 200 s. All samples were characterized by electron scan microscopy. The as prepared electrode was used as electrochemical sensor to selective detection of ascorbic acid using linear sweep voltammetry. Excellent results were obtained in a linear range from 20 to 150 µM of ascorbic acid with a limit of detection of about 3.1 µM (S/N=3.3). The sensors have a reproducibility of about 5.5% and also show high selectivity towards different interferents such as chlorine, calcium, ma…

Materials scienceElectrochemical sensors ascorbic acid food industry milk reduced graphene oxide gold nanoparticles linear sweep voltammetryfood industryOxide02 engineering and technology010402 general chemistry01 natural sciencesreduced graphene oxidelaw.inventionchemistry.chemical_compoundlawSettore ING-IND/17 - Impianti Industriali MeccanicimilkGrapheneelectrochemical sensors021001 nanoscience & nanotechnologyAscorbic acid0104 chemical sciencesIndium tin oxideElectrochemical gas sensorSettore ING-IND/23 - Chimica Fisica ApplicatachemistryColloidal goldgold nanoparticlesElectrodeLinear sweep voltammetryascorbic acid0210 nano-technologylinear sweep voltammetryNuclear chemistry
researchProduct

Bottom-up realization and electrical characterization of a graphene-based device.

2016

We propose a bottom-up procedure to fabricate an easy-to-engineer graphene-based device, consisting of a microstrip-like circuit where few-layer graphene nanoplatelets are used to contact two copper electrodes. The graphene nanoplatelets are obtained by the microwave irradiation of intercalated graphite, i.e., an environmentally friendly, fast and low-cost procedure. The contact is created by a bottom-up process, driven by the application of a DC electrical field in the gap between the electrodes, yielding the formation of a graphene carpet. The electrical resistance of the device has been measured as a function of the gap length and device temperature. The possible use of this device as a …

Materials scienceFabricationNanotechnologyBioengineering02 engineering and technology01 natural scienceslaw.inventionbottom-upnanoelectronicsElectrical resistance and conductancegraphene devicelaw0103 physical sciencesGeneral Materials ScienceMechanics of MaterialGraphitegraphene device graphene nanoplatelets nanoelectronics bottom-upElectrical and Electronic EngineeringnanoelectronicGraphene oxide paper010302 applied physicsGrapheneMechanical EngineeringGraphene foamgraphene nanoplateletsChemistry (all)General Chemistry021001 nanoscience & nanotechnologygraphene nanoplateletMechanics of MaterialsElectrodeMaterials Science (all)0210 nano-technologyGraphene nanoribbonsNanotechnology
researchProduct

Formulation and validation of a reduced order model of 2D materials exhibiting a two-phase microstructure as applied to graphene oxide

2018

Abstract Novel 2D materials, e.g., graphene oxide (GO), are attractive building blocks in the design of advanced materials due to their reactive chemistry, which can enhance interfacial interactions while providing good in-plane mechanical properties. Recent studies have hypothesized that the randomly distributed two-phase microstructure of GO, which arises due to its oxidized chemistry, leads to differences in nano- vs meso‑scale mechanical responses. However, this effect has not been carefully studied using molecular dynamics due to computational limitations. Herein, a continuum mechanics model, formulated based on density functional based tight binding (DFTB) constitutive results for GO …

Materials scienceFinite element analysiMembrane deflection02 engineering and technologyCondensed Matter Physic010402 general chemistry01 natural scienceslaw.inventionMolecular dynamicsTight bindingContinuum damage modellawNano-MonolayerMechanics of MaterialComposite materialGraphene oxideContinuum mechanicsGrapheneMechanical Engineering021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructureRepresentative volume elementFinite element method0104 chemical sciencesMechanics of MaterialsChemical physicsModel development and validation0210 nano-technology
researchProduct