Search results for "Guano"

showing 10 items of 193 documents

Uptake and Metabolism of Purine Nucleosides and Purine Nucleoside Analogues by Cells

1979

Since the discovery of purine nucleotides and purine nucleosides, 1847 by Liebig (1) (inosinic acid) and 1885 by Schulze et al. (2) (guanosine),it was only relatively recently that purine- and purine-nucleoside analogues have been considered to be effective antitumor or antiviral agents. It is due to Prusoff, Schabel and S.S. Cohen that on the other hand pyrimidine nucleoside analogues have already been used clinically as drugs for a number of years.

Purinechemistry.chemical_classificationbiologyPurine nucleoside phosphorylasePurine analogueGuanosinechemistry.chemical_compoundInosinic acidAdenosine deaminasechemistryBiochemistrybiology.proteinNucleotideNucleoside
researchProduct

Is the repair of oxidative DNA base modifications inducible by a preceding DNA damage induction?

2007

In mammalian cells, 7,8-dihydro-8-oxoguanine (8-oxoG) and some other oxidative guanine modifications are removed from the DNA by base excision repair, which is initiated by OGG1 protein. We have tested whether this repair is inducible in mouse embryonic fibroblasts (MEFs), MCF-7 breast cancer cells and primary human fibroblasts by a pretreatment with the photosensitizer Ro19-8022 plus light, which generates predominantly 8-oxoG, or with methyl methanesulfonate (MMS), which generates alkylated bases and abasic sites (AP sites). The results indicate that the repair rate of the oxidative guanine modifications induced by the photosensitizer was not increased if a priming dose of the oxidative o…

PyrrolidinesTime FactorsDNA RepairDNA repairGuanineDNA damageBiologymedicine.disease_causeBiochemistryMicechemistry.chemical_compoundTumor Cells CulturedmedicineAnimalsHumansheterocyclic compoundsAntineoplastic Agents AlkylatingBase PairingMolecular BiologyPhotosensitizing AgentsGuanosineDNACell BiologyBase excision repairGlutathioneFibroblastsMethyl MethanesulfonateGlutathioneMolecular biologyMethyl methanesulfonateOxidative StresschemistryFemaleOxidation-ReductionQuinolizinesDNAOxidative stressDNA DamageDNA Repair
researchProduct

α1-Adrenoceptors in the rat cerebral cortex: New insights into the characterization of α1L- and α1D-adrenoceptors

2010

36 p., figuras y tablas, bibliografía

Rat cerebral cortexAdrenergic receptorG proteinInositol PhosphatesBiologyAlpha1-adrenoceptor subtypesBinding CompetitiveCytosolReceptors Adrenergic alpha-1medicineAnimalsRNA MessengerRats WistarBinding siteInositol phosphate[3H]prazosin binding studiesCellular localizationCerebral CortexPharmacologychemistry.chemical_classificationReverse Transcriptase Polymerase Chain ReactionCell MembraneRatsCell biologyCytosolmedicine.anatomical_structureGene Expression RegulationBiochemistrychemistryAlpha1L-adrenoceptorsCerebral cortexG-proteinsFemaleGuanosine TriphosphateIntracellularAlpha1D-intracellular localizationEuropean Journal of Pharmacology
researchProduct

Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling.

2010

This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNA(Phe). LC/MS and LC/MS/MS techniques were used to detect and characterize the modified nucleoside as well as its cycloaddition product with a fluorescent azide. The latter resulted from a labeling reaction via Cu(I…

S-AdenosylmethioninetRNA MethyltransferasesBase SequenceStereochemistryMolecular Sequence DataGuanosineRNAFluorescence correlation spectroscopyBiologyTRNA Methyltransferaseschemistry.chemical_compoundRNA Transfer PheSpectrometry FluorescencechemistryBiochemistryAlkynesTransfer RNASynthetic Biology and ChemistryGeneticsClick chemistryMoietyClick ChemistryAzideOrganic ChemicalsFluorescent DyesNucleic acids research
researchProduct

Role of glycine-82 as a pivot point during the transition from the inactive to the active form of the yeast Ras2 protein

1991

AbstractRas proteins bind either GDP or GTP with high affinity. However, only the GTP-bound form of the yeast Ras2 protein is able to stimulate adenylyl cyclase. To identify amino acid residues that play a role in the conversion from the GDP-bound to the GTP-bound state of Ras proteins, we have searched for single amino acid substitutions that selectively affected the binding of one of the two nucleotides. We have found that the replacement of glycine-82 of the Ras2 protein by serine resulted in an increased rate of dissociation of Gpp(NH)p, a nonhydrolysable analog of GTP, while the GDP dissociation rate was not significantly modified. Glycine-82 resides in a region that is highly conserve…

Saccharomyces cerevisiae ProteinsGTP'Guanosine diphosphateProtein ConformationRestriction MappingGlycineBiophysicsSaccharomyces cerevisiaeBiochemistryFungal ProteinsGTP-binding protein regulatorsProtein structureGTP-Binding ProteinsStructural BiologyEscherichia coliGeneticsRHO protein GDP dissociation inhibitorAmino Acid SequenceRas2Binding siteMolecular BiologyPeptide sequencechemistry.chemical_classificationGuanylyl ImidodiphosphateBinding SitesPoint mutationChemistryCell BiologyGuanosine triphosphateRecombinant ProteinsAmino acidModels StructuralBiochemistryMutagenesis Site-Directedras ProteinsS. cerevisaePlasmidsRasFEBS Letters
researchProduct

Energetic aspects of intramolecular coupling between the nucleotide binding site and the distal switch II region of the yeast RAS2 protein

1994

AbstractWe have studied the interaction of the yeast RAS2 protein with guanine nucleotides using energetic parameters for the dissociation of RAS·nucleotide complexes. The results indicated that a Gly → Ser substitution at position 82 led to an altered interaction with GppNHp and, to a lesser extent, also with GDP. It was also possible to conclude that structural perturbation of Gly82 can stimulate nucleotide release by decreasing the energetic barrier for nucleotide dissociation. This, together with the observation that residues 80 and 81 are involved in the response of RAS to nucleotide exchange factors without affecting GDP binding per se, suggests a potential mechanism for exchange fact…

Saccharomyces cerevisiae ProteinsStereochemistryCdc25GuanineSaccharomyces cerevisiaeGlycineBiophysicsSaccharomyces cerevisiaeGuanosine DiphosphateBiochemistryFungal ProteinsStructure-Activity RelationshipSCD25chemistry.chemical_compoundGTP-Binding ProteinsStructural BiologyEscherichia coliSerineGeneticsNucleotideBinding siteRas2Molecular Biologychemistry.chemical_classificationGuanylyl ImidodiphosphateBinding SitesCDC25biologyGDP bindingTemperatureCell Biologybiology.organism_classificationGuanine NucleotidesRecombinant ProteinsYeastchemistryras ProteinsGDP exchange factorbiology.proteinThermodynamicsRASFEBS Letters
researchProduct

Synthesis and Characterization of Adducts Derived from the syn-Diastereomer of Benzo[a]pyrene 7,8-Dihydrodiol 9,10-Epoxide and the 5‘-d(CCTATAGATATCC…

1996

5'-d(CCTATAGATATCC) was reacted with each syn-enantiomer of trans-7,8-dihydroxy 9,10-epoxy 7,8,9,10-tetrahydrobenzo[a]pyrene (syn-BPDE). The (-)-enantiomer yielded one dominating adduct, whereas the (+)-enantiomer resulted in two major adducts. As indicated by optical spectroscopic methods, the major adduct derived from both (-)- and (+)-syn-BPDE involves cis addition of the C-10 position of the diol epoxide to the exocyclic amino group of deoxyguanosine [(-)-syn-BPDEc-N2-dG and (+)-syn-BPDEc-N2-dG, respectively], whereas the minor (+)-syn-BPDE adduct is identical to a trans adduct [(+)-syn-BPDEt-N2-dG]. The cis adducts as well as the (+)-syn-BPDEt-N2-dG adduct are chemically stable for sev…

Stereochemistry78-Dihydro-78-dihydroxybenzo(a)pyrene 910-oxideMolecular Sequence DataDiolOligonucleotidesEpoxideToxicologyAdductDNA Adductschemistry.chemical_compoundDrug StabilityDeoxyguanosineBase CompositionBase SequenceCircular DichroismTemperatureDiastereomerStereoisomerismGeneral MedicineFluorescenceSpectrometry Fluorescencenervous systemchemistryBenzo(a)pyreneNucleic Acid ConformationPyreneChemical Research in Toxicology
researchProduct

Determination of the electron-detachment energies of 2'-deoxyguanosine 5'-monophosphate anion: influence of the conformation.

2009

The vertical electron-detachment energies (VDEs) of the singly charged 2'-deoxyguanosine 5'-monophosphate anion (dGMP - ) are determined by using the multiconfigurational second-order perturbation CASPT2 method at the MP2 ground-state equilibrium geometry of relevant conformers. The origin of the unique low-energy band in the gas phase photoelectron spectrum of dGMP - , with maximum at around 5.05 eV, is unambiguously assigned to electron detachment from the highest occupied molecular orbital of π-character belonging to guanine fragment of a syn conformation. The presence of a short H-bond linking the 2-amino and phosphate groups, the guanine moiety acting as proton donor, is precisely resp…

StereochemistryGuanineMolecular ConformationDeoxyguanine NucleotidesElectronsSurfaces Coatings and FilmsNucleobaseCrystallographychemistry.chemical_compoundDeprotonationchemistryMaterials ChemistryDeoxyguanosineMoietyThermodynamicsPhysical and Theoretical ChemistryIonization energyHOMO/LUMOConformational isomerismThe journal of physical chemistry. B
researchProduct

Structure elucidation of the adducts formed by fjord region Dibenzo[a,l]pyrene-11,12-dihydrodiol 13,14-epoxides with deoxyguanosine.

1999

Model adducts to be used in the identification of biologically formed adducts were synthesized by reaction of fjord-region dibenzo[a,l]pyrene 11,12-dihydrodiol 13,14-epoxides (DB[a,l]PDE) and deoxyadenosine (dA). The (+/-)-anti-DB[a,l]PDE was reacted with dA in dimethylformamide at 100 degrees C for 30 min to give four DB[a, l]PDE-14-N(6)dA adducts: (-)-anti-trans (26%), (+)-anti-trans (26%), (-)-anti-cis (17%), and (+)-anti-cis (17%). The (+/-)-syn-DB[a,l]PDE was reacted with dA under the same conditions to yield four DB[a, l]PDE-14-N(6)dA adducts and one N7Ade adduct: (+)-syn-cis (19%), (+)-syn-trans (13%), (-)-syn-cis (19%), (-)-syn-trans (13%), and (+/-)-syn-DB[a,l]PDE-14-N7Ade (22%). T…

Steric effectsCircular dichroismMagnetic Resonance SpectroscopyMolecular StructureStereochemistryDeoxyguanosineGeneral MedicineDNAFast atom bombardmentToxicologyMass SpectrometryAdductDihydroxydihydrobenzopyreneschemistry.chemical_compoundDNA AdductsStructure-Activity RelationshipSpectrometry FluorescenceDeoxyadenosinechemistryDimethylformamidePyreneStereoselectivityChromatography High Pressure LiquidChemical research in toxicology
researchProduct

Metabolism and Lysine Biosynthesis Control in Brevibacterium Flavum: Impact of Stringent Response in Bacterial Cells

2005

Parameters affecting lysine biosynthesis by Brevibacterium flavum RC 115 cells under stringent response conditions (test guanosine 5′-diphosphate 3′-diphosphate accumulation in cells) caused by threonine limitation were investigated. Experimental results confirmed that an increase in lysine biosynthesis by this bacterium under stringent response conditions might be a result of an increase in the intracellular concentration of NADPH as well as lysine export activity.

Stringent responseLysineGuanosineMetabolismBiologycomplex mixturesCorynebacterium glutamicumchemistry.chemical_compoundchemistryBiochemistryBrevibacterium flavumbacteriaThreonineIntracellular
researchProduct