Search results for "HOT"
showing 10 items of 14851 documents
The role of disorder on Er3+ luminescence in Na1/2Bi1/2TiO3
2018
Abstract Photoluminescence in Er-doped NBT is studied at different temperatures. Remarkable reduction of the luminescence intensity in the green spectral range is found in the poled state comparing with the depoled state. Luminescence spectra at low temperatures reveal continuous wavelength shift of some maxima belonging to the 4 S 3/2 → 4 I 15/2 transition depending on the excitation wavelength, which is explained by large variety of different environments around Er 3+ related to the random distribution of Na + and Bi 3+ in A-sublattice of the ABO 3 perovskite structure. Poling extends the wavelength range where shift of luminescence maxima is observed in the direction of longer excitati…
Determination of impurity distributions in ingots of solar grade silicon by neutron activation analysis
2017
AbstractIn a series of crystallization experiments, the directional solidification of silicon was investigated as a low cost path for the production of silicon wafers for solar cells. Instrumental neutron activation analysis was employed to measure the influence of different crystallization parameters on the distribution of 3d-metal impurities of the produced ingots. A theoretical model describing the involved diffusion and segregation processes during the solidification and cooling of the ingots could be verified by the experimental results. By successive etching of the samples after the irradiation, it could be shown that a layer of at least 60 μm of the samples has to be removed to get r…
Development of hard x-ray photoelectron SPLEED-based spectrometer applicable for probing of buried magnetic layer valence states
2016
Abstract A novel design of high-voltage compatible polarimeter for spin-resolved hard X-ray photoelectron spectroscopy (Spin-HAXPES) went into operation at beamline BL09XU of SPring-8 in Hyogo, Japan. The detector is based on the well-established principle of electron diffraction from a W(001) single-crystal at a scattering energy of 103.5 eV. It's special feature is that it can be operated at a high negative bias potential up to 10 kV, necessary to access the HAXPES range. The polarimeter is operated behind a large hemispherical analyzer (Scienta R-4000). It was optimized for high transmission of the transfer optics. A delay-line detector (20 mm dia.) is positioned at the exit plane of the…
ZnMgO-based UV photodiodes: a comparison of films grown by spray pyrolysis and MBE
2016
Detecting the UV part of the spectrum is fundamental for a wide range of applications where ZnMgO has the potential to play a central role. The shortest achievable wavelength is a function of the Mg content in the films, which in turn is dependent on the growth technique. Moreover, increasing Mg contents lead to an electrical compensation of the films, which directly affects the responsivity of the photodetectors. In addition, the metal-semiconductor interface and the presence of grain boundaries have a direct impact on the responsivity through different gain mechanisms. In this work, we review the development of ZnMgO UV Schottky photodiodes using molecular beam epitaxy and spray pyrolysis…
Optical properties and microstructure of 2.02-3.30 eV ZnCdO nanowires: effect of thermal annealing
2013
International audience; ZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained.
Simulation of IQE tuning of individual cells for DC-balancing multijunction tandem cells
2016
In the present work, the performance of stacks of cells connected in series is examined at different levels of internal quantum efficiency (IQE). Incident photons, generated by employing the ASTM G173-03 data set, are accounted for individually as they interact with the stack of cells. The efficiencies of the devices studied are dependent upon the DC balance throughout the stack of cells. It is demonstrated that reducing the internal quantum efficiency of upper cells can lead to a better DC balance and thereby higher efficiency.
Simulations of the effect of the contact energy levels on a simple model of a hot carrier cell
2016
In the present work, the performance of a simplified model of a hot carrier cell is examined at different energy levels of carrier collection. Incident photons, Monte Carlo generated by employing the ASTM G173-03 data set, are accounted for individually as they interact with the cell. It is assumed that the carriers can be collected ultra-fast, thus avoiding considering hot carrier thermalisation effects. Although the model is preliminary and lacking some mechanisms of hot carrier cells, it has been demonstrated that the present approach to modelling hot carrier solar cells can be developed into fully working models. Some effects of the absorption energy levels in the valence band have been…
Direct observation of elemental segregation in InGaN nanowires by X-ray nanoprobe
2011
Using synchrotron radiation nanoprobe, this work reports on the elemental distribution in single Inx Ga1–xN nanowires (NWs) grown by molecular beam epitaxy directly on Si(111) substrates. Single NWs dispersed on Al covered sapphire were characterized by nano-X-ray fluorescence, Raman scattering and photoluminescence spectroscopy. Both Ga and In maps reveal an inhomogeneous axial distribution inside sin- gle NWs. The analysis of NWs from the same sample but with different dimensions suggests a decrease of In segregation with the reduction of NW diameter, while Ga distribution seems to remain unaltered. Photoluminescence and Raman scattering measurements carried out on ensembles of NWs exhibi…
Carbonyl-functionalized quaterthiophenes: a study of the vibrational Raman and electronic absorption/emission properties guided by theoretical calcul…
2011
This work investigates the evolution of the molecular, vibrational, and optical properties within a family of carbonyl-functionalized quaterthiophenes: 5,5'''-diheptanoyl-2,2':5',2'':5'',2'''-quaterthiophene (1), 5,5'''-diperfluorohexylcarbonyl-2,2':5',2'':5'',2'''-quaterthiophene (2), and 2,7-[bis(5-perfluorohexylcarbonylthien-2-yl)]-4H-cyclopenta[2,1-b:3,4-b']-dithiophene-4-one (3). The analysis is performed by Raman and UV/Vis absorption/excitation/fluorescence spectroscopy in combination with density functional calculations. Theoretical calculations show that substitution with carbonyl groups and perfluorohexyl chains induces progressive quinoidization of the π-conjugated backbone in co…
Gas-Phase Synthesis of the Elusive Trisilicontetrahydride Species (Si3H4)
2016
The bimolecular gas-phase reaction of ground-state atomic silicon (Si; 3P) with disilane (Si2H6; 1A1g) was explored under single-collision conditions in a crossed molecular beam machine at a collision energy of 21 kJ mol–1. Combined with electronic structure calculations, the results suggest the formation of Si3H4 isomer(s) along with molecular hydrogen via indirect scattering dynamics through Si3H6 collision complex(es) and intersystem crossing from the triplet to the singlet surface. The nonadiabatic reaction dynamics can synthesize the energetically accessible singlet Si3H4 isomers in overall exoergic reaction(s) (−93 ± 21 kJ mol–1). All reasonable reaction products are either cyclic or …