Search results for "Hall Effect"
showing 10 items of 702 documents
Momentum and energy dissipation of hot electrons in a Pb/Ag(111) quantum well system
2021
The band structure of multilayer systems plays a crucial role for the ultrafast hot carrier dynamics at interfaces. Here, we study the energy- and momentum-dependent quasiparticle lifetimes of excited electrons in a highly ordered Pb monolayer film on Ag(111) prior and after the adsorption of a monolayer of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). Using time-resolved two-photon momentum microscopy with femtosecond visible light pulses, we show that the electron dynamics of the Pb/Ag(111) quantum well system is largely dominated by two types of scattering processes: (i) isotropic intraband scattering processes within the quantum well state (QWS) and (ii) isotropic interband sca…
Polarized and resonant Raman spectroscopy on single InAs nanowires
2011
We report polarized Raman scattering and resonant Raman scattering studies on single InAs nanowires. Polarized Raman experiments show that the highest scattering intensity is obtained when both the incident and analyzed light polarizations are perpendicular to the nanowire axis. InAs wurtzite optical modes are observed. The obtained wurtzite modes are consistent with the selection rules and also with the results of calculations using an extended rigid-ion model. Additional resonant Raman scattering experiments reveal a redshifted E1 transition for InAs nanowires compared to the bulk zinc-blende InAs transition due to the dominance of the wurtzite phase in the nanowires. Ab initio calculatio…
Electron-phonon heat transport and electronic thermal conductivity in heavily doped silicon-on-insulator film
2003
Electron–phonon interaction and electronic thermal conductivity have been investigated in heavily doped silicon at subKelvin temperatures. The heat flow between electron and phonon systems is found to be proportional to T6. Utilization of a superconductor–semiconductor–superconductor thermometer enables a precise measurement of electron and substrate temperatures. The electronic thermal conductivity is consistent with the Wiedemann–Franz law. Peer reviewed
Effects of partial self-ordering of Si dots formed by chemical vapor deposition on the threshold voltage window distribution of Si nanocrystal memori…
2006
We study the role that the denuded zone around Si nanocrystals obtained by chemical vapor deposition plays on the fluctuations of the dot surface coverage. In fact, the capture mechanism of the silicon adatoms in the proximity of existing dots restricts the number of possible nucleation sites, the final dot size, and the dot position, thus driving the process toward partial self-order. We numerically evaluate the relative dispersion of surface coverage for several gate areas and compare the results to the fully random case. The coverage dispersion is related to the fluctuations from bit to bit of the threshold voltage window (Δ Vth) distribution of nanocrystal memories. The evaluations, com…
Silicon Single Electron Transistors with Single and Multi Dot Characteristics
2000
AbstractSilicon single electron transistors (SET) with side gate have been fabricated on a heavily doped silicon-on-insulator (SOI) substrate. Samples demonstrate two types of characteristics: some of them demonstrate multiple dot behavior and one demonstrates single dot behavior in a wide temperature range. SETs demonstrate oscillations of drain-source current and changes in the width of the Coulomb blockade region with change of gate voltage at least up to 100 K. At temperature below 20 K long-term oscillations (relaxation) of source-drain current after switching the gate voltage has been observed in both multiple dot and single dot samples. Illumination affects both the characteristics o…
Half-metallic compensated ferrimagnetism with a tunable compensation point over a wide temperature range in the Mn-Fe-V-Al Heusler system
2017
The cubic Heusler compound Mn1.5FeV0.5Al with the L21 Heusler structure is the first fully compensated half-metallic ferrimagnet with 24 valence electrons. The ferrimagnetic state can be tuned by changing the composition such that the compensation point appears at finite temperatures ranging from 0 K up to 226 K, while retaining half-metallicity in the system. In this paper, the structural, magnetic and transport properties of the Mn-Fe-V-Al system are discussed. Magnetic reversal and a change of sign of the anomalous Hall effect were observed at the compensation point, which gives rise to a sublattice spin-crossing. These materials present new possibilities for potential spintronic devices…
Raman study and theoretical calculations of strain in GaN quantum dot multilayers
2006
Changes in strain and phonon mode energy in stacks of self-assembled GaN quantum dots embedded in AlN have been studied by means of Raman spectroscopy as a function of the number of periods. The ${E}_{2H}$ phonon modes related to the quantum dots and AlN spacers are clearly resolved, and their energies allow monitoring the state of strain of the dots and AlN spacers simultaneously. The evolution of the measured phonon frequencies and the associated strains are discussed in comparison with theoretical calculations of the inhomogeneous strain distribution in a system of coherent misfitting inclusions.
Phonon Softening and Electron-Phonon Interaction in YBa2Cu3O7−δ
1993
We report on the Raman scattering investigation of the 335 cm−1 phonon of Ag (pseudo-B1g) symmetry in thin YBa2Cu3O7−δfilms on various substrates. The experiments yield values for the phonon softening below Tc, which differ from sample to sample. We find a linear relation between the softening and the inverse asymmetry parameter of the phonon Fano-like lineshape, when these parameters, obtained from different samples, are compared with each other. In contrast to this, the onset temperatures for the softening are the same for these samples.
Design and operation of CMOS-compatible electron pumps fabricated with optical lithography
2017
We report CMOS-compatible quantized current sources (electron pumps) fabricated with nanowires (NWs) on 300mm SOI wafers. Unlike other Al, GaAs or Si based metallic or semiconductor pumps, the fabrication does not rely on electron-beam lithography. The structure consists of two gates in series on the nanowire and the only difference with the SOI nanowire process lies in long (40nm) nitride spacers. As a result a single, silicide island gets isolated between the gates and transport is dominated by Coulomb blockade at cryogenic temperatures thanks to the small size and therefore capacitance of this island. Operation and performances comparable to devices fabricated using e-beam lithography is…
Origin of the substrate current after soft-breakdown in thin oxide n-MOSFETs
1999
In this paper is presented an experimental investigation on the origin of the substrate current after soft-breakdown in n-MOSFETs with 4.5 nm-thick oxide. At lower voltages this current shows a plateau that can be explained with the generation of hole-electron pairs in the space charge region and at the Si-SiO2 interface, and to carrier diffusion between the channel and the substrate. At higher voltages the substrate current steeply increases with voltage, due to trap-assisted tunneling from the substrate valence band to the gate conduction band, which becomes possible for gate voltages higher than the threshold voltage. Measurements on several devices at dark and in the presence of light, …