Search results for "Heterojunction"
showing 10 items of 227 documents
Thiophene pyrenyl derivatives for the supramolecular processability of single-walled carbon nanotubes in thin film heterojunction
2017
Abstract A major problem for the use of single-wall carbon nanotubes (SWCNTs) in electronic devices relates to their poor processability. Chemical modification inevitably introduces defects in the nanotube lattice, resulting in a loss of electronic properties. In this contest, we report on a supramolecular approach with the aim of increasing the dispersion of SWCNTs in solution and in organic semiconductor matrices by ensuring the optoelectronic properties. In particular, new pyrenyl derivatives of thiophene have been synthesized and used to improve the solubility of SWCNTs for electron transfer in thin film heterojunction with poly(3-hexylthiophene) (P3HT) as donor system. Photoinduced ele…
Heterostructured metal oxides-ZnO nanorods films prepared by SPPS route for photodegradation applications
2019
Abstract This work presents the first preparation using the Solution Precursor Plasma Spray process of heterostructured films associating ZnO nanorods (NRs) and various metal oxides (CuO, Fe2O3 and Co3O4) by Solution Precursor Plasma Spray process. These CuO/ZnO, Fe2O3/ZnO and Co3O4/ZnO films exhibit hierarchically chocolate sticks-like, dandelion-like or chrysanthemum-like surface morphologies. These heterostructures were confirmed by SEM, XRD, EDS and Raman analyses. The bandgaps of heterostructured films are narrower than that of pure ZnO. The CuO/ZnO film exhibits the highest photocatalytic activity both under UV and visible light irradiation for the degradation of the Orange II dye due…
Novel TiO2-WO3 self-ordered nanotubes used as photoanodes: Influence of Na2WO4 and H2O2 concentration during electrodeposition
2021
[EN] Hybrid TiO2-WO3 nanostructures has been synthesized by electrochemical anodization under controlled hydrodynamic conditions followed by electrodeposition in the presence of different contents of Na2WO4 (5, 15 and 25 mM) and H2O2 (20, 30 and 40 mM). The influence of the electrolyte used for electrodeposition on the morphology, crystalline structure and photoelectrochemical response for water splitting has been evaluated through Field Emission Electronic Microscopy, High-Resolution Transmission Electron Microscopy, Confocal Raman Spectroscopy, Grazing Incidence X Ray Diffraction, X-Ray Photoelectron Spectroscopy, Atomic Force microscopy and photocurrent versus potential measurements. Add…
Giant Spin Seebeck Effect through an Interface Organic Semiconductor
2019
Interfacing an organic semiconductor C60 with a non-magnetic metallic thin film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at ambient temperature, while its interface with a magnetic metal (Fe or Co) can tune the anisotropic magnetic surface property of the material. Here, we demonstrate that sandwiching C60 in between a magnetic insulator (Y3Fe5O12: YIG) and a non-magnetic, strong spin-orbit metal (Pt) promotes highly efficient spin current transport via the thermally driven spin Seebeck effect (SSE). Experiments and first principles calculations consistently show that the presence of C60 reduces significantly the conductivity mismatch between YIG and Pt and the s…
Interfacial Dzyaloshinskii-Moriya interaction and chiral magnetic textures in a ferrimagnetic insulator
2019
The interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayers of heavy metal and ferromagnetic metals enables the stabilization of novel chiral spin structures such as skyrmions. Magnetic insulators, on the other hand can exhibit enhanced dynamics and properties such as lower magnetic damping and therefore it is of interest to combine the properties enabled by interfacial DMI with insulating systems. Here, we demonstrate the presence of interfacial DMI in heterostructures that include insulating magnetic layers. We use a bilayer of perpendicularly magnetized insulating thulium iron garnet (TmIG) and the heavy metal platinum, and find a surprisingly strong interfacial DMI that, comb…
Growth and characterization of ZnO1−xSx highly mismatched alloys over the entire composition
2015
Alloys from ZnO and ZnS have been synthesized by radio-frequency magnetron sputtering over the entire alloying range. The ZnO1−xSx films are crystalline for all compositions. The optical absorption edge of these alloys decreases rapidly with small amount of added sulfur (x ∼ 0.02) and continues to red shift to a minimum of 2.6 eV at x = 0.45. At higher sulfur concentrations (x > 0.45), the absorption edge shows a continuous blue shift. The strong reduction in the band gap for O-rich alloys is the result of the upward shift of the valence-band edge with x as observed by x-ray photoelectron spectroscopy. As a result, the room temperature bandgap of ZnO1−xSx alloys can be tuned from 3.7 eV to …
Nitride-based heterostructures grown by MOCVD for near- and mid-infrared intersubband transitions
2007
Intersubband (lSB) optical absorption in different nitride-based heterostructures grown by metal-organic chemical vapour deposition (MOCVD) is reported. The role of indium in AlInN/GaN multi-quantum wells (MQWs) is investigated. At high concentration (15%) AlInN is quasi lattice-matched to GaN and no cracks appear in the structure. At very low indium concentration (similar to 2%) the material quality is improved without decreasing the ISB transition wavelength with respect to the case of indium-free structures. Different mechanisms of strain relaxation in pure and 2% indium-doped AlN/GaN MQW structures are also investigated. ISB transition wavelengths of 2 urn for AlN/GaN MQWs, and 3 mu n f…
Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/shell nanowire heterostructures
2020
This research was funded by the ERDF project “Smart Metal Oxide Nanocoatings and HIPIMS Technology”, project number: 1.1.1.1/18/A/073. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².
Thin film growth and band lineup of In2O3 on the layered semiconductor InSe
1999
Thin films of the transparent conducting oxide In2O3 have been prepared in ultrahigh vacuum by reactive evaporation of indium. X-ray diffraction, optical, and electrical measurements were used to characterize properties of films deposited on transparent insulating mica substrates under variation of the oxygen pressure. Photoelectron spectroscopy was used to investigate in situ the interface formation between In2O3 and the layered semiconductor InSe. For thick In2O3 films a work function of φ = 4.3 eV and a surface Fermi level position of EF−EV = 3.0 eV is determined, giving an ionization potential IP = 7.3 eV and an electron affinity χ = 3.7 eV. The interface exhibits a type I band alignmen…
Modification of the sheet resistance under Ti/Al/Ni/Au Ohmic contacts on AlGaN/GaN heterostructures
2018
This paper reports on the modification of the sheet resistance under Ti/Al/Ni/Au Ohmic contacts on AlGaN/GaN heterostructures, studied by means of Transmission Line Model (TLM) structures, morphological and structural analyses, as well as computer simulations. In particular, the contacts exhibited an Ohmic behaviour after annealing at 800 degrees C, with a specific contact resistance rho(c) = (2.4 +/- 0.2) x 10(-5) Omega cm(2), which was associated to morphological and structural changes of both the metal layer and the interface. Interestingly, TLM analyses gave a value of the sheet resistance under the contact (R-SK = 26.1 +/- 5.0 Omega/rectangle) significantly lower than that measured out…