Search results for "Imaging agent"
showing 10 items of 15 documents
Modulating disease-relevant tau oligomeric strains by small molecules
2020
The pathological aggregation of tau plays an important role in Alzheimer's disease and many other related neurodegenerative diseases, collectively referred to as tauopathies. Recent evidence has demonstrated that tau oligomers, small and soluble prefibrillar aggregates, are highly toxic due to their strong ability to seed tau misfolding and propagate the pathology seen across different neurodegenerative diseases. We previously showed that novel curcumin derivatives affect preformed tau oligomer aggregation pathways by promoting the formation of more aggregated and nontoxic tau aggregates. To further investigate their therapeutic potential, we have extended our studies o disease-relevant bra…
Development of an Easily Bioconjugatable Water-Soluble Single-Photon Emission-Computed Tomography/Optical Imaging Bimodal Imaging Probe Based on the …
2021
A water-soluble fluorescent aza-BODIPY platform (Wazaby) was prepared and functionalized by a polyazamacrocycle agent and a bioconjugable arm. The resulting fluorescent derivative was characterized and bioconjugated onto a trastuzumab monoclonal antibody as a vector. After bioconjugation, the imaging agent appeared to be stable in serum (>72 h at 37 °C) and specifically labeled HER-2-positive breast tumors slices. The bioconjugate was radiolabeled with [111In] indium and studied in vivo. The developed monomolecular multimodal imaging probe (MOMIP) is water-soluble and chemically and photochemically stable, emits in the near infrared (NIR) region (734 nm in aqueous media), and displays a goo…
First bodipy–DOTA derivatives as probes for bimodal imaging
2010
The synthesis and the photophysical studies of the first bodipy-DOTA and its In(III), Ga(III) and Cu(II) complexes are reported. The introduction of an isothiocyanate handle generates a new bimodal imaging agent capable of both optical and nuclear imaging.
Highly Fluorescent and Water-Soluble Diketopyrrolopyrrole Dyes for Bioconjugation
2015
International audience; The preparation of highly water-soluble and strongly fluorescent diketopyrrolopyrrole (DPP) dyes using an unusual taurine-like sulfonated linker has been achieved. Exchanging a phenyl for a thienyl substituent shifts the emission wavelength to near λ=600 nm. The free carboxylic acid group present in these new derivatives was readily activated and the dyes were subsequently covalently linked to a model protein (bovine serum albumin; BSA). The bioconjugates were characterized by electronic absorption, fluorescence spectroscopy and MALDI-TOF mass spectrometry, thus enabling precise determination of the labeling density (ratio DPP/BSA about 3 to 8). Outstanding values of…
Synthesis and in vitro Evaluation of (S)-2-([11C]Methoxy)-4- [3-methyl-1-(2-piperidine-1-yl-phenyl)-butyl-carbamoyl]-benzoic Acid ([11C]Methoxy-repag…
2005
Synthesis and Pharmacological Evaluation of [11C]4-Methoxy-N-[2-(thiophen-2-yl)imidazo[1,2-a]pyridin-3-yl]benzamide as a Brain Penetrant PET Ligand S…
2019
The α4/6βδ-containing GABAA receptors are involved in a number of brain diseases. Despite the potential of a δ-selective imaging agent, no PET radioligand is currently available for in vivo imaging...
124I Radiolabeling of a AuIII‐NHC Complex for In Vivo Biodistribution Studies†
2020
Abstract AuIII complexes with N‐heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII‐NHC complexes by direct oxidation with radioactive [124I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII‐to‐AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII‐NHC prodrug is not immediately reduced after administration but able to reach the major…
Ex vivo and in vivo evaluation of [18F]PR04.MZ in rodents: a selective dopamine transporter imaging agent.
2009
N-4-Fluorobut-2-yn-1-yl-2beta-carbomethoxy-3beta-phenyltropane (PR04.MZ) has been developed as dopamine transporter (DAT) ligand for molecular imaging. It contains a terminally fluorinated, conformationally constrained nitrogen substituent that is well suited for the introduction of fluorine-18. The present report describes the pharmacological characterisation of [18F]PR04.MZ. The ligand shows an IC50 value of 2 nM against human DAT, whereas the IC50 value against human serotonin transporter and human noradrenalin transporter are lower (110 nM and 22 nM, respectively). Furthermore, its ex vivo organ distribution, its binding profile in the rat brain and reversibility of binding were examine…
Laser-Fabricated Fluorescent, Ligand-Free Silicon Nanoparticles: Scale-up, Biosafety, and 3D Live Imaging of Zebrafish under Development
2022
This work rationalizes the scalable synthesis of ultrasmall, ligand-free silicon nanomaterials via liquid-phase pulsed laser ablation process using picosecond pulses at ultraviolet wavelengths. Results showed that the irradiation time drives hydrodynamic NP size. Isolated, monodisperse Si-NPs are obtained at high yield (72%) using post-treatment process. The obtained Si-NPs have an average size of 10 nm (not aggregated) and display photoemission in the green spectral range. We directly characterized the ligand-free Si-NPs in a vertebrate animal (zebrafish) and assessed their toxicity during the development. In vivo assay revealed that Si-NPs are found inside in all the early life stages of …
Fluorescent styrylpyrylium probes for the imaging of mitochondria in live cells
2021
Eight styrylpyrylium tetrafluoroborate salts have been synthesized and fully optically characterized by UV-vis absorption and fluorescence steady-state/time-resolved spectroscopies. The new dyes exhibit strong emission bands with yellow–orange colours, depending on the substituents present in the structure. Notably, the Stokes shift recorded for some of them exceeds 100 nm, a very valuable feature for biological imaging. Four of them have been assayed as biological imaging agents by confocal laser scanning microscopy (CLSM) in the human hepatoma cell line Hep3B. It has been found that all the compounds efficiently stain intracellular structures which have been identified as mitochondria thr…