Search results for "Insect"
showing 10 items of 2033 documents
On the identity of Neoseiulus fallacis (Garman 1948) (Parasitiformes, Phytoseiidae): redescription of the species and description of the new species …
2016
ABSTRACTNeoseiulus fallacis (Garman) is a broadly commercialised phytoseiid mite used in Integrated Pest Management (IPM) programmes especially in northern and southern America. However, its taxonomic status was, until now, equivocal because no redescription based on type material had ever been made. The authors redescribe N. fallacis from type material in Garman’s collection, designating the lectotype and paralectotypes for the species. Moreover, a new species of the fallacis complex, discovered among the fallacis type material, is described and named N. garmani sp. nov. in honour of Philip Garman.
Phytoseiid mites from Basilicata region (Southern Italy): species diversity, redescription of Typhloseiulus arzakanicus Arutunjan and a dichotomic ke…
2017
A survey of phytoseiid mites was carried out in the Basilicata region (Southern Italy) between 1976 and 2014 on wild and cultivated plants. A total of 38 species belonging to eleven genera and two subgenera were found on 59 plant species. The most common species was Euseius finlandicus (Oudemans) (39%) followed by Typhlodromus (Typhlodromus) exhilaratus Ragusa (32.2%), Kampimodromus aberrans (Oudemans) (27.1%), Typhlodromus (Anthoseius) cryptus (Athias-Henriot) (23.7%). Typhloseiulus arzakanicus (Arutunjan), found for first time in Italy, is redescribed here, while the male of this species is described for the first time. A dichotomic key of the species belonging to the genus Typhloseiulus …
Permanent genetic resources added to molecular ecology resources database 1 April 2010 - 31 May 2010
2010
Correspondance: Molecular Ecology Resources Primer Development Consortium, E-mail: editorial.office@molecol.com; International audience; This article documents the addition of 396 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anthocidaris crassispina, Aphis glycines, Argyrosomus regius, Astrocaryum sciophilum, Dasypus novemcinctus, Delomys sublineatus, Dermatemys mawii, Fundulus heteroclitus,Homalaspis plana, Jumellea rossii, Khaya senegalensis, Mugil cephalus, Neoceratitis cyanescens, Phalacrocorax aristotelis, Phytophthora infestans, Piper cordulatum, Pterocarpus indicus, Rana dalmatina, Rosa pulverulenta, Saxifraga …
Resource profitability, but not caffeine, affects individual and collective foraging in the stingless beePlebeia droryana
2019
ABSTRACT Plants and pollinators form beneficial relationships, with plants offering resources in return for pollination services. Some plants, however, add compounds to nectar to manipulate pollinators. Caffeine is a secondary plant metabolite found in some nectars that affects foraging in pollinators. In honeybees, caffeine increases foraging and recruitment to mediocre food sources, which might benefit the plant, but potentially harms the colonies. For the largest group of social bees, the stingless bees, the effect of caffeine on foraging behaviour has not been tested yet, despite their importance for tropical ecosystems. More generally, recruitment and foraging dynamics are not well und…
Assessing the nucleotide diversity of three aphid species by RAPD
1997
A method is presented for the estimation of nucleotide diversity and genetic structure of populations from RAPD (random amplified polymorphic DNA) data. It involves a modification of the technique developed by Lynch and Crease (1990) for the case of restriction sites as survey data. As new elements the method incorporates (i) dominance correction, (ii) values of asexual reproduction of the populations sampled, and (iii) an analytical variance of the number of nucleotide substitutions per site. Sampling was carried out at two geographic scales for three aphid species. At a macrogeographic scale, populations of Rhopalosiphum padi did not show statistical genetic differentiation. Aphis gossypi…
Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers.
2002
International audience; The genetic structure of a greenhouse population of the mite Tetranychus urticae was studied by the analysis of five microsatellite loci. Genetic variation was compared during a crop season between periods of population foundation and rapid population increase and was investigated in two consecutive years. The population displayed significant heterozygote deficiency at all the sampling periods. However, inbreeding tended to decrease with increasing density (FIS coefficient between 0.13 and 0.25). No significant genetic differentiation between samples was found either at a spatial scale within the greenhouse or at a temporal scale between two growing seasons (FST betw…
Next-generation biological control
2020
Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Nex…
Plant-phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars
2021
Early Access; International audience; There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbor a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behavior. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here we provide the first evidence of a parasitoid-associated symbiont…
Modeling Environmental Influences in the Psyllaephagus bliteus (Hymenoptera: Encyrtidae)-Glycaspis brimblecombei (Hemiptera: Aphalaridae) Parasitoid-…
2017
Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae) is an invasive psyllid introduced into the Mediterranean area, where it affects several species of Eucalyptus. Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae) is a specialized parasitoid of this psyllid that was accidentally introduced into Italy in 2011. We developed a model of this host–parasitoid system that accounts for the influence of environmental conditions on the G. brimblecombei population dynamics and P. bliteus parasitism rates in the natural ecosystem. The Lotka–Volterra-based model predicts non-constant host growth and parasitoid mortality rates in association with variation in environmental conditions. The model was …
Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen
2012
International audience; Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vecto…