Search results for "Integer"

showing 10 items of 250 documents

Linear and cyclic radio k-labelings of trees

2007

International audience; Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two distinct vertices x and y, where dG(x,y) is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear (cyclic, respectively) radio k-labeling number of G is the minimum span of a linear (cyclic, respectively) radio k-labeling of G. In this p…

Applied Mathematics010102 general mathematicsGraph theory[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]Astrophysics::Cosmology and Extragalactic Astrophysics0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Span (engineering)01 natural sciencesUpper and lower boundsCombinatoricsGraph theory[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]IntegerRadio channel assignment010201 computation theory & mathematicsCyclic and linear radio k-labelingMetric (mathematics)Path (graph theory)Discrete Mathematics and CombinatoricsOrder (group theory)0101 mathematicsMSC 05C15 05C78ConnectivityMathematics
researchProduct

A new compact formulation for the discrete p-dispersion problem

2017

Abstract This paper addresses the discrete p -dispersion problem (PDP) which is about selecting  p facilities from a given set of candidates in such a way that the minimum distance between selected facilities is maximized. We propose a new compact formulation for this problem. In addition, we discuss two simple enhancements of the new formulation: Simple bounds on the optimal distance can be exploited to reduce the size and to increase the tightness of the model at a relatively low cost of additional computation time. Moreover, the new formulation can be further strengthened by adding valid inequalities. We present a computational study carried out over a set of large-scale test instances i…

Binary search algorithmMathematical optimization021103 operations researchInformation Systems and ManagementLine searchGeneral Computer Science0211 other engineering and technologies0102 computer and information sciences02 engineering and technologyManagement Science and Operations ResearchSolver01 natural sciencesIndustrial and Manufacturing EngineeringFacility location problemSet (abstract data type)010201 computation theory & mathematicsModeling and SimulationProgramming paradigmInteger programmingAlgorithmStandard model (cryptography)MathematicsEuropean Journal of Operational Research
researchProduct

Splittings of Toric Ideals

2019

Let $I \subseteq R = \mathbb{K}[x_1,\ldots,x_n]$ be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal $I$ can be "split" into the sum of two smaller toric ideals. For a general toric ideal $I$, we give a sufficient condition for this splitting in terms of the integer matrix that defines $I$. When $I = I_G$ is the toric ideal of a finite simple graph $G$, we give additional splittings of $I_G$ related to subgraphs of $G$. When there exists a splitting $I = I_1+I_2$ of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of $I$ in terms of the (multi-)graded Betti numbers of $I_1$ and $I_2$.

Binomial (polynomial)Betti numberPrime idealExistential quantificationCommutative Algebra (math.AC)01 natural sciencesCombinatoricsInteger matrixMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsGraded Betti numbers; Graphs; Toric idealsMathematics - Combinatorics0101 mathematicsMathematics::Symplectic GeometryMathematicsAlgebra and Number TheorySimple graphIdeal (set theory)Mathematics::Commutative AlgebraGraded Betti numbers Graphs Toric ideals010102 general mathematicsMathematics::Rings and Algebras16. Peace & justiceMathematics - Commutative AlgebraSettore MAT/02 - AlgebraToric ideals13D02 13P10 14M25 05E40Settore MAT/03 - Geometria010307 mathematical physicsCombinatorics (math.CO)Graded Betti numbersGraphs
researchProduct

Iterative sparse matrix-vector multiplication for accelerating the block Wiedemann algorithm over GF(2) on multi-graphics processing unit systems

2012

SUMMARY The block Wiedemann (BW) algorithm is frequently used to solve sparse linear systems over GF(2). Iterative sparse matrix–vector multiplication is the most time-consuming operation. The necessity to accelerate this step is motivated by the application of BW to very large matrices used in the linear algebra step of the number field sieve (NFS) for integer factorization. In this paper, we derive an efficient CUDA implementation of this operation by using a newly designed hybrid sparse matrix format. This leads to speedups between 4 and 8 on a single graphics processing unit (GPU) for a number of tested NFS matrices compared with an optimized multicore implementation. We further present…

Block Wiedemann algorithmComputer Networks and CommunicationsComputer scienceGraphics processing unitSparse matrix-vector multiplicationGPU clusterParallel computingGF(2)Computer Science ApplicationsTheoretical Computer ScienceGeneral number field sieveMatrix (mathematics)Computational Theory and MathematicsFactorizationLinear algebraMultiplicationComputer Science::Operating SystemsSoftwareInteger factorizationSparse matrixConcurrency and Computation: Practice and Experience
researchProduct

Generalized centro-invertible matrices with applications

2014

Centro-invertible matrices are introduced by R.S. Wikramaratna in 2008. For an involutory matrix R, we define the generalized centro-invertible matrices with respect to R to be those matrices A such that RAR = A^−1. We apply these matrices to a problem in modular arithmetic. Specifically, algorithms for image blurring/deblurring are designed by means of generalized centro-invertible matrices. In addition, if R1 and R2 are n × n involutory matrices, then there is a simple bijection between the set of all centro-invertible matrices with respect to R1 and the set with respect to R2.

Centro-symmetric matrixSquare root of a 2 by 2 matrixApplied MathematicsInvolutory matrixINGENIERIA TELEMATICAMatrius (Matemàtica)Matrix ringMatrix multiplicationCombinatoricsMatrix (mathematics)Integer matrix2 × 2 real matricesCentro-invertible matrixMatrix analysisInvolutory matrixMATEMATICA APLICADAComputer Science::Distributed Parallel and Cluster ComputingMathematics
researchProduct

Languages with mismatches

2007

AbstractIn this paper we study some combinatorial properties of a class of languages that represent sets of words occurring in a text S up to some errors. More precisely, we consider sets of words that occur in a text S with k mismatches in any window of size r. The study of this class of languages mainly focuses both on a parameter, called repetition index, and on the set of the minimal forbidden words of the language of factors of S with errors. The repetition index of a string S is defined as the smallest integer such that all strings of this length occur at most in a unique position of the text S up to errors. We prove that there is a strong relation between the repetition index of S an…

Combinatorics on wordsApproximate string matchingGeneral Computer ScienceRepetition (rhetorical device)String (computer science)Search engine indexingComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Approximate string matchingData structureTheoretical Computer ScienceCombinatoricsSet (abstract data type)Formal languagesCombinatorics on words Formal languages Approximate string matching IndexingIndexingWord (group theory)MathematicsInteger (computer science)Computer Science(all)Theoretical Computer Science
researchProduct

Extremal Frobenius numbers in a class of sets

1998

For given $ A_k=\{ a_1,\ldots ,a_k \}, a_1 \le \ldots \le a_k $ coprime the Frobenius number $ {g}(A_k) $ is defined as the greatest integer ${g}$ with no representation¶¶ ${g}=\sum \limits ^k_{i=1}\,x_i\,a_i,\;x_i\in {\Bbb N}_0 $ . ¶¶A class $ {\bf A}^*_k $ is given, such that ¶¶ $ {\overline {g}}^*(k,y):= \max \{ {g}(A_k)|A_k\in {\bf A}^*_k,\, a_k\le y \} $ ¶¶has the same asymptotic behaviour as the general function¶¶ $ {\overline {g}}(k,y):= \max \{ {g}(A_k)| a_k\le y \}\, {\rm for} \, y\to \infty $ .¶¶ Furthermore, ¶¶ $ {\underline {g}}^*(k,x):= \min \{ {g}(A_k)|A_k\in {\bf A}^*_k,\, a_1\ge x \} $ ¶¶is shown to have the same order of magnitude as the general function¶¶ $ {\underline {g}…

CombinatoricsClass (set theory)IntegerCoprime integersGeneral MathematicsGeneral functionMathematicsArchiv der Mathematik
researchProduct

Asymptotics for thenth-degree Laguerre polynomial evaluated atn

1992

We investigate the asymptotic behaviour of ? n (n),n?? where ? n (x) denotes the Laguerre polynomial of degreen. Our results give a partial answer to the conjecture ?? n (n)>1 forn>6, made in 1984 by van Iseghem. We also show the connection between this conjecture and the continued fraction approximants of $$6\sqrt {{3 \mathord{\left/ {\vphantom {3 \pi }} \right. \kern-\nulldelimiterspace} \pi }} $$ .

CombinatoricsComputational MathematicsConjectureIntegerDegree (graph theory)Applied MathematicsMathematical analysisLaguerre polynomialsConnection (algebraic framework)MathematicsNumerische Mathematik
researchProduct

Homogeneous products of characters

2004

I. M. Isaacs has conjectured (see \cite{isa00}) that if the product of two faithful irreducible characters of a solvable group is irreducible, then the group is cyclic. In this paper we prove a special case of the following conjecture, which generalizes Isaacs conjecture. Suppose that $G$ is solvable and that $\psi,\phi\in\Irr(G)$ are faithful. If $\psi \phi=m\chi$ where $m$ is a positive integer and $\chi \in \Irr(G)$ then $\psi$ and $\phi$ vanish on $G- Z(G)$. In particular we prove that the above conjecture holds for $p$-groups.

CombinatoricsConjectureAlgebra and Number TheoryIntegerGroup (mathematics)Solvable groupHomogeneousProduct (mathematics)FOS: MathematicsGroup Theory (math.GR)Mathematics::Representation TheoryMathematics - Group TheoryMathematics
researchProduct

Integer Complexity: Experimental and Analytical Results II

2015

We consider representing natural numbers by expressions using only 1’s, addition, multiplication and parentheses. Let \( \left\| n \right\| \) denote the minimum number of 1’s in the expressions representing \(n\). The logarithmic complexity \( \left\| n \right\| _{\log } \) is defined to be \({ \left\| n \right\| }/{\log _3 n}\). The values of \( \left\| n \right\| _{\log } \) are located in the segment \([3, 4.755]\), but almost nothing is known with certainty about the structure of this “spectrum” (are the values dense somewhere in the segment?, etc.). We establish a connection between this problem and another difficult problem: the seemingly “almost random” behaviour of digits in the ba…

CombinatoricsDifficult problemLogarithmIntegerSpectrum (functional analysis)Natural numberConnection (algebraic framework)Mathematics
researchProduct