Search results for "Ion source"
showing 10 items of 337 documents
First demonstration of Doppler-free 2-photon in-source laser spectroscopy at the ISOLDE-RILIS
2020
Abstract Collinear Doppler-free 2-photon resonance ionization has been applied inside a hot cavity laser ion source environment at CERN-ISOLDE. An injection-seeded Ti:sapphire ring laser was used to generate light pulses with a Fourier-limited linewidth for high-resolution spectroscopy. Using a molybdenum foil as a reflective surface positioned at the end of the target transfer line, rubidium was successfully ionized inside the hot cavity. The results are presented alongside previously obtained data from measurements performed at the RISIKO mass separator at Mainz University, where collinear and perpendicular ionization geometries were tested inside an RFQ ion guide. This work is a pre-curs…
Characterization of 233U alpha recoil sources for 229()Th beam production
2019
Radioactive $^{233}$U alpha recoil sources are being considered for the production of a thorium ion source to study the low-energy isomer in $^{229}$Th with high-resolution collinear laser spectroscopy at the IGISOL facility of the University of Jyv\"askyl\"a. In this work two different $^{233}$U sources have been characterized via alpha and gamma spectroscopy of the decay radiation obtained directly from the sources and from alpha-recoils embedded in implantation foils. These measurements revealed rather low $^{229}$Th recoil efficiencies of only a few percent. Although the low efficiency of one of the two sources can be attributed to its inherent thickness, the low recoil efficiency of th…
Fourier transform-ion cyclotron resonance mass spectrometry — A new tool for measuring highly charged ions in an electron beam ion trap
1995
Abstract Fourier transform-ion cyclotron mass spectrometry has been applied to the study of highly charged ions produced and confined in an electron beam ion trap. Measurements of the relative ion abundance of hydrogenlike and bare krypton ions were made and compared to the abundance ratios determined with standard X-ray techniques. Good agreement was found establishing the reliability of the method as a new tool in highly charged ion research.
Cooling of the plasma chamber for the AECR-U type electron cyclotron resonance ion source ARTEMIS
2001
Abstract The temperature distribution inside the ECRIS plasma chamber has been studied using finite element analysis. The main goal of these studies was to find out the safest cooling design for the temperature sensitive permanent magnets. In ECR ion sources they are used to provide the hexapole field. Two different designs for the cooling of the magnets were investigated. The temperature distribution on the surface of the plasma electrode was also studied. With the aid of the cooling simulations the most efficient cooling for the new ECR ion source was found. As a result of which, safety and higher reliability of operation can be reached.
Scintillation light produced by low-energy beams of highly-charged ions
2007
Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xe$^{q+}$ with various charge states between $q$=2 and $q$=18 have been used at energies between 5 keV and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and 100 nA. Beams of highly charged residual gas ions have been produced by the EBIS at 4.5 keV per charge and with low intensities down to 100 pA. The scintillator materials used are flat screens of P46 YA…
Simulation studies of the laser ablation ion source at the SHIPTRAP setup
2020
Hyperfine interactions 241(1), 46 (2020). doi:10.1007/s10751-020-01708-0
Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources
2008
The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place …
First application of the Laser Ion Source and Trap (LIST) for on-line experiments at ISOLDE
2012
The Laser Ion Source and Trap (LIST) provides a new mode of operation for the resonance ionization laser ion source (RILIS) at ISOLDE/CERN, reducing the amount of surface-ionized isobaric contaminants by up to four orders of magnitude. After the first successful on-line test at ISOLDE in 2011 the LIST was further improved in terms of efficiency, selectivity, and reliability through several off-line tests at Mainz University and at ISOLDE. In September 2012, the first on-line physics experiments to use the LIST took place at ISOLDE. The measurements of the improved LIST indicate more than a twofold increase in efficiency compared to the LIST of the 2011 run. The suppression of surface-ionize…
Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa–Dye ISOLDE RILIS
2016
Abstract The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.
Blurring the boundaries between ion sources: The application of the RILIS inside a FEBIAD type ion source at ISOLDE
2016
For the first time, the laser resonance photo-ionization technique has been applied inside a FEBIAD-type ion source at an ISOL facility. This was achieved by combining the ISOLDE RILIS with the ISOLDE variant of the FEBIAD ion source (the VADIS) in a series of off-line and on-line tests at CERN. The immediate appli- cations of these developments include the coupling of the RILIS with molten targets at ISOLDE and the introduction of two new modes of FEBIAD operation: an element selective RILIS mode and a RILIS + VADIS mode for increased efficiency compared to VADIS mode operation alone. This functionality has been demonstrated off-line for gallium and barium and on-line for mercury and cadmi…