Search results for "J60"

showing 10 items of 53 documents

Positive solutions for singular double phase problems

2021

Abstract We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a p-Laplacian and of a weighted q-Laplacian ( q p ) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter λ > 0 , the equation has at least two positive solutions.

Class (set theory)Double phase problemNehari manifold01 natural sciencesDirichlet distributionsymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: MathematicsApplied mathematics0101 mathematics35J60 35D05Positive solutionsParametric statisticsMathematicsApplied Mathematics010102 general mathematicsSingular termSingular termMathematics::Spectral TheoryDifferential operatorTerm (time)010101 applied mathematicsDouble phaseDiscontinuous weightsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Radial symmetry of p-harmonic minimizers

2017

"It is still not known if the radial cavitating minimizers obtained by Ball [J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. R. Soc. Lond. A 306 (1982) 557--611] (and subsequently by many others) are global minimizers of any physically reasonable nonlinearly elastic energy". The quotation is from [J. Sivaloganathan and S. J. Spector, Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity, Ann. Inst. H. Poincare Anal. Non Lineaire 25 (2008), no. 1, 201--213] and seems to be still accurate. The model case of the $p$-harmonic energy is considered here. We prove that the planar radial minimizers are indee…

radial symmetryosittaisdifferentiaaliyhtälötMathematics - Complex VariablesMechanical Engineering010102 general mathematicsMathematical analysisSymmetry in biologyElastic energyp-harmonic minimizers01 natural sciencesfunktioteoria010101 applied mathematicssymbols.namesakeMathematics (miscellaneous)Poincaré conjecture35J60 30C70symbolsFOS: MathematicsIdentity functionBall (mathematics)0101 mathematicsComplex Variables (math.CV)AnalysisNon lineaireMathematics
researchProduct

Nonlinear scalar field equations with general nonlinearity

2018

Consider the nonlinear scalar field equation \begin{equation} \label{a1} -\Delta{u}= f(u)\quad\text{in}~\mathbb{R}^N,\qquad u\in H^1(\mathbb{R}^N), \end{equation} where $N\geq3$ and $f$ satisfies the general Berestycki-Lions conditions. We are interested in the existence of positive ground states, of nonradial solutions and in the multiplicity of radial and nonradial solutions. Very recently Mederski [30] made a major advance in that direction through the development, in an abstract setting, of a new critical point theory for constrained functionals. In this paper we propose an alternative, more elementary approach, which permits to recover Mederski's results on the scalar field equation. T…

Pure mathematicsMathematics::Analysis of PDEsMonotonic function2010 MSC: 35J20 35J6001 natural sciencesMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mountain pass0101 mathematicsMathematicsgeographygeography.geographical_feature_category35J20 35J60Applied Mathematics010102 general mathematicsMultiplicity (mathematics)Monotonicity trickNonradial solutions010101 applied mathematicsNonlinear systemBerestycki-Lions nonlinearityBounded functionNonlinear scalar field equationsScalar fieldAnalysisAnalysis of PDEs (math.AP)
researchProduct

Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit

2011

In the context of self-stabilizing processes, that is processes attracted by their own law, living in a potential landscape, we investigate different properties of the invariant measures. The interaction between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann and J. Tugaut. Electron. J. Probab. 15 (2010) 2087–2116], the authors proved that, for linear interaction and under suitable conditions, there exists a unique symmetric limit measure associated to the set of invariant measures in the small-noise limit. The aim of this study is essentially to point out that this statement leads to the existence, as the noise intensity is small, of one unique…

Statistics and ProbabilityMcKean-Vlasov equationLaplace transformdouble-well potential010102 general mathematicsMathematical analysisFixed-point theoremfixed point theoremDouble-well potentialInvariant (physics)01 natural sciencesself-interacting diffusionuniqueness problem[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilityRate of convergenceLaplace's methodUniquenessInvariant measureperturbed dynamical systemstationary measures0101 mathematicsLaplace's methodprimary 60G10; secondary: 60J60 60H10 41A60Mathematics
researchProduct

p-Laplacian type equations involving measures

2003

This is a survey on problems involving equations $-\operatorname{div}{\Cal A}(x,\nabla u)=\mu$, where $\mu$ is a Radon measure and ${\Cal A}:\bold {R}^n\times\bold R^n\to \bold R^n$ verifies Leray-Lions type conditions. We shall discuss a potential theoretic approach when the measure is nonnegative. Existence and uniqueness, and different concepts of solutions are discussed for general signed measures.

Mathematics - Analysis of PDEsFOS: Mathematics35J60 31C45Analysis of PDEs (math.AP)
researchProduct

Local Gauge Conditions for Ellipticity in Conformal Geometry

2013

In this article we introduce local gauge conditions under which many curvature tensors appearing in conformal geometry, such as the Weyl, Cotton, Bach, and Fefferman-Graham obstruction tensors, become elliptic operators. The gauge conditions amount to fixing an $n$-harmonic coordinate system and normalizing the determinant of the metric. We also give corresponding elliptic regularity results and characterizations of local conformal flatness in low regularity settings.

Mathematics - Differential Geometry53A30 (Primary) 53B20 35J60 (Secondary)General MathematicsCoordinate systemConformal mapCurvatureconformal geometry01 natural sciencessymbols.namesakeMathematics - Analysis of PDEs0103 physical sciencesFOS: Mathematics0101 mathematicsFlatness (mathematics)Mathematics010308 nuclear & particles physicsta111010102 general mathematicsMathematical analysisgauge conditionsGauge (firearms)Elliptic operatorDifferential Geometry (math.DG)symbolsWeyl transformationMathematics::Differential GeometryConformal geometryAnalysis of PDEs (math.AP)curvature tensors
researchProduct

Moduli spaces of rank two aCM bundles on the Segre product of three projective lines

2016

Let P^n be the projective space of dimension n on an algebraically closed field of characteristic 0 and F be the image of the Segre embedding of P^1xP^1xP^1 inside P^7. In the present paper we deal with the moduli spaces of locally free sheaves E on F of rank 2 with h^i(F,E(t))=0 for i=1,2 and each integer t.

14J60 14J45 14D20[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]Rank (differential topology)Commutative Algebra (math.AC)01 natural sciences[ MATH.MATH-AC ] Mathematics [math]/Commutative Algebra [math.AC]CombinatoricsMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsProjective testAlgebraic Geometry (math.AG)MathematicsAlgebra and Number TheoryImage (category theory)010102 general mathematicsMathematics - Commutative Algebra16. Peace & justice[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Moduli spaceSegre embeddingMSC: Primary: 14J60; secondary: 14J45; 14D20Product (mathematics)[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physicsJournal of Pure and Applied Algebra
researchProduct

Nonlinear diffusion in transparent media: the resolvent equation

2017

Abstract We consider the partial differential equation u - f = div ⁡ ( u m ⁢ ∇ ⁡ u | ∇ ⁡ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.

Dirichlet problemPure mathematicsTotal variation; transparent media; linear growth Lagrangian; comparison principle; Dirichlet problems; Neumann problems35J25 35J60 35B51 35B99Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsBoundary (topology)01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsBounded functionBounded variationFOS: MathematicsNeumann boundary conditionUniquenessNabla symbol0101 mathematicsAnalysisAnalysis of PDEs (math.AP)ResolventMathematics
researchProduct

An unbounded family of log Calabi–Yau pairs

2016

We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces ${\mathbb F}_n$ for every positive integer $n$ big enough.

geography of threefoldSequenceDegree (graph theory)Projective bundleGeneral Mathematics14J30 14J32 14J60CombinatoricsMathematics - Algebraic Geometrysymbols.namesakeMathematics::Algebraic Geometryprojective bundlesIntegerEuler characteristicLog Calabi-Yau pairFOS: MathematicssymbolsCalabi–Yau manifoldSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryMAT/03 - GEOMETRIAMathematicsRendiconti Lincei - Matematica e Applicazioni
researchProduct

Exact simulation of diffusion first exit times: algorithm acceleration

2020

In order to describe or estimate different quantities related to a specific random variable, it is of prime interest to numerically generate such a variate. In specific situations, the exact generation of random variables might be either momentarily unavailable or too expensive in terms of computation time. It therefore needs to be replaced by an approximation procedure. As was previously the case, the ambitious exact simulation of exit times for diffusion processes was unreachable though it concerns many applications in different fields like mathematical finance, neuroscience or reliability. The usual way to describe exit times was to use discretization schemes, that are of course approxim…

[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Probability (math.PR)primary 65C05 secondary:60G40 68W20 68T05 65C20 91A60 60J60diffusion processes[MATH] Mathematics [math]Exit timeExit time Brownian motion diffusion processes rejection sampling exact simulation multi-armed bandit randomized algorithm.randomized algorithm[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]exact simulationFOS: MathematicsBrownian motionmulti-armed banditMathematics - ProbabilityRejection sampling
researchProduct