Search results for "Kali"

showing 10 items of 823 documents

Isopropanolic Cimicifuga racemosa is favorable on bone markers but neutral on an osteoblastic cell line

2009

Postmenopausal women treated with an isopropanolic extract of Cimicifuga racemosa underwent a decrease in the urinary concentration of N-telopeptides, a marker of bone resorption, and an increase in alkaline phosphatase, a marker of bone formation, at the third month of therapy. Serum from treated women did not modify the activity of alkaline phosphatase or the expression of three genes, runt-related transcription factor-2 (Runx-2), alkaline phosphatase, and osteocalcin, when added to the MC3T3-E1 osteoblastic cell line.

Cimicifugamedicine.medical_specialtyOsteocalcinCore Binding Factor Alpha 1 SubunitOsteoblastic cellBone and BonesCollagen Type IBone resorptionCell Line2-PropanolMiceOsteogenesisInternal medicinemedicineAnimalsHumansProspective StudiesBone ResorptionOsteoblastsbiologyPlant Extractsbusiness.industryCimicifuga racemosaBone markersObstetrics and GynecologyOsteoblastAlkaline PhosphatasePostmenopauseEndocrinologymedicine.anatomical_structureReproductive MedicineCell cultureOsteocalcinbiology.proteinAlkaline phosphataseFemalePeptidesbusinessBiomarkersPhytotherapyFertility and Sterility
researchProduct

Circular dichroism of magnetically induced transitions for D 2 lines of alkali atoms

2018

In this letter we study magnetic circular dichroism in alkali atoms exhibiting asymmetric behaviour of magnetically induced transitions. The magnetic field induces transitions between hyperfine levels of alkali atoms and in the range of magnetic field, the intensities of these transitions experience significant enhancement. We have inferred a general rule applicable for the D 2 lines of all alkali atoms, that is the transition intensity enhancement is around four times larger for the case of than for excitation for , whereas it is several hundreds of thousand times larger in the case of than that for polarization for . This asymmetric behaviour results in circular dichroism. For experimenta…

Circular dichroismAlkali atomsMaterials scienceMagnetic circular dichroismGeneral Physics and AstronomyParity (physics)01 natural sciencesMolecular physicsMagnetic field010309 opticsLaser linewidth0103 physical sciencesPhysics::Atomic Physics010306 general physicsHyperfine structureExcitationEPL (Europhysics Letters)
researchProduct

Self-trapped exciton formation through photo-induced recombination of F and H centers in alkali iodides

1997

The photo-induced conversion of the primary F, H center pairs into self-trapped excitons have been proposed and studied in alkali iodides.

Condensed Matter::Quantum GasesChemistryExcitonPhysics::Atomic PhysicsAtomic physicsAlkali metalRecombinationBiexcitonSPIE Proceedings
researchProduct

Real-space Wigner-Seitz Cells Imaging of Potassium on Graphite via Elastic Atomic Manipulation

2015

Atomic manipulation in the scanning tunnelling microscopy, conventionally a tool to build nanostructures one atom at a time, is here employed to enable the atomic-scale imaging of a model low-dimensional system. Specifically, we use low-temperature STM to investigate an ultra thin film (4 atomic layers) of potassium created by epitaxial growth on a graphite substrate. The STM images display an unexpected honeycomb feature, which corresponds to a real-space visualization of the Wigner-Seitz cells of the close-packed surface K atoms. Density functional simulations indicate that this behaviour arises from the elastic, tip-induced vertical manipulation of potassium atoms during imaging, i.e. el…

Condensed Matter::Quantum GasesCondensed Matter::Materials SciencenanorakenteetkaliumPhysics::Atomic and Molecular Clustersscanning tunnelling microscopyPhysics::Atomic Physics
researchProduct

Trapping of laser-vaporized alkali metal atoms in rare-gas matrices

1999

Abstract Alkali metal atoms prepared by laser ablation of solid Li and Na are trapped in Ar, Kr, and Xe matrices and studied by electron paramagnetic resonance spectroscopy (EPR) at 15 K. Evidence for tight trapping sites, not observed for atoms generated by conventional Knudsen oven techniques, is presented. The novel tight trapping sites are characterized by a large increase in the isotropic hyperfine coupling constant and a simultaneous decrease in the isotropic g -value. Based on the EPR data, it is suggested that the observed tight trapping corresponds to single substitution of lattice atoms in Ar, Kr, and Xe matrices.

Condensed Matter::Quantum GasesLaser ablationChemistryIsotropyGeneral Physics and AstronomyTrappingAlkali metalLaserlaw.inventionlawLattice (order)Physics::Atomic PhysicsKnudsen numberPhysical and Theoretical ChemistryAtomic physicsElectron paramagnetic resonanceChemical Physics Letters
researchProduct

Formation of self-trapped excitons through stimulated recombination of radiation-induced primary defects in alkali halides

1998

Abstract A self-trapped exciton formation through photostimulated recombination of an F and an H center — the exciton-created primary defect pair, is proposed and experimentally examined in alkali halides at low temperatures.

Condensed Matter::Quantum GasesPrimary (chemistry)PhotoluminescenceChemistryPhotostimulated luminescenceExcitonInorganic chemistryBiophysicsHalideRadiation inducedGeneral ChemistryCondensed Matter PhysicsAlkali metalPhotochemistryBiochemistryAtomic and Molecular Physics and OpticsCondensed Matter::Materials SciencePhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsPhysics::Chemical PhysicsRecombinationJournal of Luminescence
researchProduct

Functional consequences of prey acclimation to ocean acidification for the prey and its predator

2016

Ocean acidification is the suite of chemical changes to the carbonate system of seawater as a consequence of anthropogenic carbon dioxide (CO2) emissions. Despite a growing body of evidences demonstrating the negative effects of ocean acidification on marine species, the consequences at the ecosystem level are still unclear. One factor limiting our ability to upscale from species to ecosystem is the poor mechanistic understanding of the functional consequences of the observed effects on organisms. This is particularly true in the context of species interactions. The aim of this work was to investigate the functional consequence of the exposure of a prey (the mussel Brachidontes pharaonis) t…

Condition indexRegistration number of speciesSalinityTemperateBottles or small containers/Aquaria (<20 L)inorganicAlkalinityBrachidontes pharaonisIncubation durationExperimentTemperature waterCarbon inorganic dissolvedAssimilation efficiencyEriphia verrucosaBreaking loadCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateAlkalinity totalBottles or small containers Aquaria 20 LtotalpHTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorEarth System ResearchUniform resource locator link to referenceanimal structuresCalcite saturation stateArthropodaLengthwaterGrowth MorphologyFigureBenthosUniform resource locator/link to referenceMediterranean SeaAnimaliaBehaviourBicarbonate ionTime in secondsTypeTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorCalcite saturation state standard errorGrowth rateBottles or small containers/Aquaria (&lt;20 L)Calculated using CO2SYSfungiCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentAragonite saturation state standard errorPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologyBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfSpecies interaction
researchProduct

Impact of Pulsed Electric Fields on Enzymes

2017

International audience; Pulsed electric field (PEF) processing has emerged as a promising technology in the development of tailor-made processes to effectively control the enzyme activity. It has been proven as an effective technique for the preservation of food products as it can result in substantial inactivation of most undesirable enzymes. When compared to microbial inactivation, however, large specific energy inputs are required to inactivate enzymes. The existing evidence suggests that PEF can also stimulate the activity of beneficial enzymes at low intense treatments. The PEF affects enzyme activity by changing mainly the secondary (α-helix, β-sheets, etc.), tertiary (spatial conform…

Conformational changes0301 basic medicineProteasesFood processing[SDV.BIO]Life Sciences [q-bio]/Biotechnology[SDV]Life Sciences [q-bio]010402 general chemistry01 natural sciencesPolyphenol oxidase03 medical and health sciences[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringEnzyme activityLipasePulsed electric fieldchemistry.chemical_classificationbiologyChemistryEnzyme structureEnzyme assayEnzymesrespiratory tract diseases0104 chemical sciences030104 developmental biologyEnzymeBiochemistrybiology.proteinAlkaline phosphatase[SDV.AEN]Life Sciences [q-bio]/Food and NutritionPeroxidase
researchProduct

Alkali consumption of aliphatic carboxylic acids during alkaline pulping of wood and nonwood feedstocks

2013

Abstract The carbohydrate degradation products have been examined, which are formed during the conventional kraft pulping of a softwood, hardwoods, bamboo, and wheat straw as well as soda and soda-anthraquinone pulping of wheat straw. The focus was on “volatile” acids such as formic and acetic acids and “nonvolatile” hydroxy monocarboxylic and dicarboxylic acids. The different consumption profiles were obtained for the charged alkali required for the neutralization of these aliphatic acids depending on the feedstock and the cooking method. The relative composition of the acid fraction in the black liquors of softwood and hardwood and nonwood feedstocks showed characteristic variations. Howe…

Consumption (economics)bambooBambooSoftwooddeacetylationwheat strawChemistryaliphatic carboxylic acidsalkaline pulpinghardwoodfood and beveragesmustalipeäAlkali metalPulp and paper industrycomplex mixturesBiomaterialsstomatognathic diseasesstomatognathic systemsoftwoodBotanyHardwoodBlack liquorhfsg
researchProduct

Eulerian two-fluid model of alkaline water electrolysis for hydrogen production

2020

Hydrogen storage is a promising technology for storage of renewable energy resources. Despite its high energy density potential, the development of hydrogen storage has been impeded, mainly due to its significant cost. Although its cost is governed mainly by electrical energy expense, especially for hydrogen produced with alkaline water electrolysis, it is also driven by the value of the cell tension. The most common means of electrolyzer improvement is the use of an electrocatalyst, which reduces the energy required for electrochemical reaction to take place. Another efficient means of electrolyzer improvement is to use the Computational Fluid Dynamics (CFD)-assisted design that allows the…

Control and OptimizationMaterials scienceHydrogen020209 energyNuclear engineeringBubbleEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technologylcsh:Technologylaw.inventionHydrogen storagelaw0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringDiffusion (business)Engineering (miscellaneous)Hydrogen productionElectrolysislcsh:TRenewable Energy Sustainability and the EnvironmentElectric potential energyAlkaline water electrolysis021001 nanoscience & nanotechnologyTwo-phase processSettore ING-IND/23 - Chimica Fisica ApplicatachemistryHydrogen production0210 nano-technologyCFDTwo-phases flowAlkaline water electrolysishydrogen production; alkaline water electrolysis; two-phases flow; CFD; two-phase processEnergy (miscellaneous)
researchProduct