Search results for "LM"

showing 10 items of 19289 documents

Thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe20Ni80 spin-valve structures

2017

Abstract We investigated the thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe 20 Ni 80 spin-valve structures. Thin film systems were obtained with the help of sputtering method. For the first type of systems two particular thicknesses ( d ML  = 3 and 20 nm) and different disposition of magnetic layers (ML) were used. For the second type different thickness of Ag ( d NML ) spacer layer was used. The research of the crystal structure was performed with the transmission electron microscope. The results demonstrate that every investigated as-deposited sample does not include solid solutions, intermetallic compounds or impurities. It has been found that among the spin-valve…

010302 applied physicsMaterials scienceSpin valveIntermetallicAnalytical chemistry02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsNuclear magnetic resonanceImpuritySputtering0103 physical sciencesThermal stabilityThin film0210 nano-technologyInstrumentationSolid solutionVacuum
researchProduct

Effect of oxidation post treatments on TiO2 coating manufactured using reactive very low-pressure plasma spraying (R-VLPPS)

2020

Abstract TiO2 coatings manufactured using reactive very low-pressure plasma spraying (R-VLPPS) were analyzed in different regions related to their position compared to the plasma flame. For that, a screen was used in order to hide an area of the substrate from the direct plasma flux. The coating morphology changed from quasi lamellar structure to highly vapor structure and coatings exhibited obvious modifications in terms of phases and mechanical properties. The effect of oxidation post treatment on the as sprayed coating was then studied by selecting two methods: in situ oxidation post treatment and classical thermal treatment. The two post treatments provided an increase of the main rutil…

010302 applied physicsMaterials scienceSubstrate (chemistry)02 engineering and technologySurfaces and InterfacesGeneral ChemistryPlasmaThermal treatmentengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and Films[SPI]Engineering Sciences [physics]CoatingRutilePhase (matter)0103 physical sciencesMaterials ChemistryengineeringLamellar structureComposite material0210 nano-technologyPorositySurface and Coatings Technology
researchProduct

Band gap of corundumlike α−Ga2O3 determined by absorption and ellipsometry

2017

The electronic structure near the band gap of the corundumlike $\ensuremath{\alpha}$ phase of ${\mathrm{Ga}}_{2}{\mathrm{O}}_{3}$ has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400--190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which y…

010302 applied physicsMaterials scienceValence (chemistry)Physics and Astronomy (miscellaneous)Band gap02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologymedicine.disease_cause01 natural sciencesMolecular physicsGaussian broadeningEllipsometryAttenuation coefficient0103 physical sciencesmedicineGeneral Materials ScienceThin film0210 nano-technologyUltravioletPhysical Review Materials
researchProduct

Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations

2016

Abstract We report on first-principles calculations of the properties of the MoSe2/Mo(110) interface. Due to mismatch between the lattice parameters of the two structures, different patterns can form at the interface. We have studied the formation energy and the band alignment of six patterns for the MoSe2 (0001)/Mo(110) interface and one pattern for the MoSe2 (11 2 0)/Mo(110) interface. The MoSe2 (11 2 0)/Mo(110) interface is more stable than the MoSe 2 (0001)/Mo(110) interface and in contrast to MoSe2 (0001)/Mo(110), no Schottky barrier forms at MoSe2 (11 2 0)/Mo(110). Doping with Na modifies the band alignment at the interfaces. The Schottky barrier height decreases, provided that a Na a…

010302 applied physicsMaterials science[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Schottky barriercu(InDopingMetals and Alloys02 engineering and technologySurfaces and InterfacesInterface[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGa)Se 2MoSe2/Mo(110)Lattice (order)0103 physical sciencesMaterials ChemistryThin film solar cellThin-film solar cell0210 nano-technologySchottky barrier
researchProduct

SiC MOSFET vs SiC/Si Cascode short circuit robustness benchmark

2019

Abstract Nowadays, MOSFET SiC semiconductors short circuit capability is a key issue. SiC/Si Cascodes are compound semiconductors that, in some aspects, show a similar MOSFET behaviour. No interlayer dielectric insulation suggests, in theory, Cascode JFETs as more robust devices. The purpose of this paper is to compare the drift and degradation of two commercial devices static parameters by exposing them to different levels of repetitive 1.5 μs short-circuit campaigns at 85% of its breakdown voltage. Short-circuit time has been set experimentally, and longer times result in catastrophic failure of MOSFET devices due to over self-heating. For this purpose, pre- and post-test short circuit ch…

010302 applied physicsMaterials sciencebusiness.industry020208 electrical & electronic engineering02 engineering and technologyDielectricCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSemiconductorCatastrophic failureRobustness (computer science)0103 physical sciencesMOSFET0202 electrical engineering electronic engineering information engineeringOptoelectronicsBreakdown voltageCascodeElectrical and Electronic EngineeringSafety Risk Reliability and QualitybusinessShort circuitMicroelectronics Reliability
researchProduct

Determination of refractive index of submicron-thick films using resonance shift in a four-layer slab waveguide

2017

The measurement of refractive index of very thin films at the order of ten to hundred nanometers is cumbersome and usually requires employing sophisticated techniques such as the spectral ellipsometry. In this paper we describe a simple contact method for measuring the refractive index of thin films. Here we have used the prism-coupling technique for characterizing samples prepared as four-layer slab waveguides. The waveguide resonance condition can be calculated by solving simple analytic transcendental equations for the slab waveguide. Then the captured mode position as a function of cladding thickness is used for probing the refractive index of cladding layer. We used indium-tin-oxide la…

010302 applied physicsMaterials sciencebusiness.industryTranscendental equationPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnologyCladding (fiber optics)01 natural scienceslaw.inventionOpticsEllipsometrylaw0103 physical sciencesSlabThin film0210 nano-technologybusinessStep-index profileRefractive indexWaveguideSPIE Proceedings
researchProduct

Evaluation and Comparison of Novel Precursors for Atomic Layer Deposition of Nb2O5 Thin Films

2012

Atomic layer deposition (ALD) of Nb2O5 thin films was studied using three novel precursors, namely, tBuN═Nb(NEt2)3, tBuN═Nb(NMeEt)3, and tamylN═Nb(OtBu)3. These precursors are liquid at room temperature, present good volatility, and are reactive toward both water and ozone as the oxygen sources. The deposition temperature was varied from 150 to 375 °C. ALD-type saturative growth modes were confirmed at 275 °C for tBuN═Nb(NEt2)3 and tBuN═Nb(NMeEt)3 together with both oxygen sources. Constant growth rate was observed between a temperature regions of 150 and 325 °C. By contrast, amylN═Nb(OtBu)3 exhibited limited thermal stability and thus a saturative growth mode was not achieved. All films we…

010302 applied physicsMaterials scienceta114General Chemical EngineeringAnalytical chemistrychemistry.chemical_element02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnology01 natural sciencesOxygenAmorphous solidElastic recoil detectionAtomic layer depositionchemistry0103 physical sciencesMaterials ChemistryThermal stabilityThin film0210 nano-technologyta116Volatility (chemistry)High-κ dielectricChemistry of Materials
researchProduct

Atomic Layer Deposition of Osmium

2011

Growth of osmium thin films and nanoparticles by atomic layer deposition is described. The Os thin films were successfully grown between 325 and 375 °C using osmocene and molecular oxygen as precursors. The films consisted of only Os metal as osmium oxides were not detected in X-ray diffraction measurements. Also the impurity contents of oxygen, carbon, and hydrogen were less than 1 at % each at all deposition temperatures. The long nucleation delay of the Os process facilitates either Os nanoparticle or thin film deposition. However, after the nucleation delay of about 350 cycles the film growth proceeded linearly with increasing number of deposition cycles. Also conformal growth of Os thi…

010302 applied physicsMaterials scienceta114General Chemical EngineeringInorganic chemistryAnalytical chemistryNucleationchemistry.chemical_element02 engineering and technologyGeneral ChemistryChemical vapor deposition021001 nanoscience & nanotechnologyOsmocene01 natural scienceschemistry.chemical_compoundAtomic layer depositionCarbon filmchemistry0103 physical sciencesMaterials ChemistryDeposition (phase transition)OsmiumThin film0210 nano-technologyta116Chemistry of Materials
researchProduct

Atomic Layer Deposition of LiF Thin Films from Lithd, Mg(thd)2, and TiF4 Precursors

2013

Lithium fluoride is an interesting material because of its low refractive index and large band gap. Previously LiF thin films have been deposited mostly by physical methods. In this study a new way of depositing thin films of LiF using atomic layer deposition (ALD) is presented. Mg(thd)2, TiF4 and Lithd were used as precursors, and they produced crystalline LiF at a temperature range of 300–350 °C. The films were studied by UV–vis spectrometry, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic force microscopy (AFM), time-of-flight elastic recoil detection analysis (ToF-ERDA), and energy dispersive X-ray spectroscopy (EDX). In addition, film adhesion was t…

010302 applied physicsMaterials scienceta214ta114Band gapGeneral Chemical EngineeringAnalytical chemistryLithium fluoride02 engineering and technologyGeneral ChemistryAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesElastic recoil detectionchemistry.chemical_compoundAtomic layer depositionchemistryImpurity0103 physical sciencesMaterials ChemistryThin film0210 nano-technologySpectroscopyChemistry of Materials
researchProduct

Analysis of thin high-k and silicide films by means of heavy ion time-of-flight forward-scattering spectrometry

2006

The use of forward scattered heavy incident ions in combination with a time-of-flight-energy telescope provides a powerful tool for the analysis of very thin (5–30 nm) films. This is because of greater stopping powers and better detector energy resolution for heavier ions than in conventional He-RBS. Because of the forward scattering angle, the sensitivity is greatly enhanced, thus reducing the ion beam induced desorption during the analysis of very thin films. The drawback of forward scattering angle is the limited mass separation for target elements. We demonstrate the performance of the technique with the analysis of 25 nm thick NiSi films and atomic layer deposited 6 nm thick HfxSiyOz f…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceIon beamSiliconbusiness.industryScatteringForward scatterchemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energyIonElastic recoil detectionTime of flightchemistry0103 physical sciencesOptoelectronicsAtomic physicsThin film0210 nano-technologybusinessInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct